GENERAL REPORT

```
ON THE OPERATIONS of the
```


gREAT TRIGONOMETRICAL SURVEY OF INDIA,

D Uli I N O

```
1874-75,
Prepared for submission to the Government of India.
BY
COLONEL J. T. WALKER, R.E., F.R.S., \&C., sulerintendent of the survey.
```



```
printed at the office of the superintendent a. t. survey.
M. J. OCONTOR
```


GENERAL REPORT

ON THE OPERATIONS

OF THE

great trigonometrical survey of india,

DURIN $\mathbf{0}$

1874-75,

Prepared for submission to the Government of India.

BY

COLONEL J. T. WALKER, R.E., F.R.S., \&C., SUPERINTENDENT OF THE SURVEY.

M. J. O.CONNUR.
1676.

tie operations of tile

great trigonometrical survey of INDIA IN 1874-75.

The following is a summary of the several operations of the present year, given in the order in which they will be found described in this report.
I. Trigonometrical. The Rámnád Longitudinal Scrics; Parallel $9 \frac{11^{\circ}}{4} \ldots$
II. Trigonometrical. The Operations in the Assam Valley. ...
$\begin{array}{rlll}\text { III. } & \text { Trigonometrical. } & \text { The Secondary Triangulation in Burmah. } & \ldots \\ \text { IV. } & \text { Trigonometrical. } & \text { The Eastern Prontier Scries, Burmal. } & \text {... }\end{array}$
V. Trigonometrical. The Jodlupúr Series; Meridian 72 $\frac{1}{2}^{\circ}$.
VI. Topograplical. The Survey of Kattywar. ...
VII. Topographical. The Survey of Guzerat. ...
VIII. Topograplical. The Surveys in Delura Dún and the Siwaliks.
IX. Topographical. Himalayan Surveys in Kumaun and Garhwál. ...
X. Spirit Leveling. In the Madras Presidency.
XI. Tidal.
XII. Geodetic. Electro-telegraphic determinations of Difference \}
XIII. Geographical. Trans-Himalayan Explorations.
XIV. Computing Officc. Examination, final reduction and publication of $\begin{gathered}\text { the Obscrvations. }\end{gathered}$
XV. Cartography. Preparation and publication of various Charts and Maps.

$\begin{aligned} & \text { Described at pages } \\ & \text { of the } \end{aligned}$	
Report.	Appodix
(5)	3 -
(6)	18
(7)	24
(8)	20
(9)	26-8
(10)	28
(10)	33-
(11)	42
(13)	
(13)	
(14)	
(17)	55
(18)	
(21)	58
(21)	69

（2．）The operations carricd on during the year under revien have pro－ duced the following out－turn of work；－of Principal Iriangulation，with the great theodolites of the Survey， 89 triaugles，covering and area of 6,416 square miles，and disposed in chains which，if united，would extend over a direct length of 297 miles，and in connection with which 2 astronomical azimuths of verifica－ tion have been measured；－of Secondary Triangulation，with smaller theodo－ lites，an area of $4,0 \pm 9$ square miles has been closely covered with points for the topographical surveys，and an area of about 6,000 square miles has been operated in pari passu with the principal triangulation；－of Topographical Surveying，an area of 2,176 square miles has been completed in the Himalayas，on the scale of one inch to the mile，and areas of 2,141 square miles，on the two－inch scale，and 1,208 square miles on the four－inch scale，in the course of which 2,026 linear miles of boundary and check lines have been traversed；－and of Geographical Explorations，much valuable work has been completed，on the Northern Frontier of AfgLanistan，and on the lines from Ládákh to Lhása，and Lhása to Assam．
（3．）The principal triangulation has been executed with the great theo－ dolites，whose azimuthal circles have a diameter of 24 inches，and are read by 5 equidistant mi－ croscopes．The average theoretical probable error of the angles，and the average geometri－ cal error，of the triangles－the amount by which the sum of the three observed angles of each triangle differs from $180^{\circ}+$ the spheroid－ al excess－are shown in the table given in the margin．The number of parties employed on the principal triangulation－which was origi－ nally fixed at six，but had by last year been reduced to four－has this year been reduced to three，the party employed on the Brahma－

Section．	Probable Errors of Ob serred Angles．		Gcometrical Errors of Triangles．		
			$\begin{gathered} \text { 淢 } \\ \text { 百 } \\ \hline \end{gathered}$	$\begin{aligned} & \dot{\Xi} \\ & \text { E } \\ & \text { O } \\ & \text { 首 } \end{aligned}$	
I．	106	$\pm 0^{\prime \prime} 17$	42	0\％＇65	Plaing．
II．	56	$\cdot 25$	19	$\cdot 48$	Hille．
V．	84	－ 16	28	$\cdot 47$	＂
Arerages，．．．	．．．	$\pm 0^{\prime \prime} 18$	．\cdot	0.51	

（4．）The financial administration of the Department during the present year has been exceedingly difficult and embarrassing．A large increase of ex－ penditure had been occasioned by the introduction of the system of consolidated salaries，which was effected in 1874 ，under the anticipation that the increase might be met by＇savings in other quarters＇；these savings bave turned out to be illusive，and a further increase of expenditure has been incurred by the resump－ tion of operations in Burmal，where almost every description of work is very much more expensive than it is in India proper．The orders and instructions for giving effect to the above measures were followed very speedily by orders for large reductions of expenditure；the latter could not be immediately carried out without keeping a large portion of the establishment of officers and surveyors unemployed；they are now to be gradually carried out within the next three years，by the stoppage of promotions，and a reduction of numbers as vacancies occur by death，retirement，or transfer to other Departments．
（5．）I now proceed，as usual，to report on and give an abstract of tho operations of the several Survey Parties and Offices．Further details will be found in the Extracts from the Narrative Reports of the Executive Officers given in the first appendix；and a full account of the Trans－Himalayan Explorations will be met with in the second appendix．

THE RAMNAD LONGITUDINAL SERTES ; PARALLEL $9 \mathfrak{4}^{\circ}$.

(6.) The operations for the revision of the portion of the Great Arc which

Pensonnetar

Mnjor B. R, Branall, Dy. Supdt. 2nd Grade.

Mr. G. Belcham, Surveyor 4th Grade. C. D. Potter, Assistunl Surveyor let Grade.

Mr. E. W. Laseron, Asst. Burveyor 2nd Grede.
lies to the south of Bangalore having been completed, as stated in my last Report, the Madras party was deputed to commence the Rámnád Longitudinal Series, which is to trend east-wards from the Great Arc on the parallel of 91°, and had been approximately laid out during the previous year.
(7.) Several stations had to be built and the rays between them to be cleared, before the final observations could be commenced; the series had also to be extended along the coast to the Island of Rámesweram, with a view to the proposed connection of the Survey of India with that of Ceylon. Major Branfill himself took in hand the completion of the stations and rays of the first figure, and sent his assistants to build the stations and clear the rays fürther in advance. He commenced the final observations on the 29 hh December and completed six stations by the 20th January, when, finding that he was likely to overtake the station-building and ray-clearing operations-which would have brought his own work to a stand still-he left his assistant Mr. Belcham to continue the observations and proceeded in person to direct and accelerate the operations in advance. It was fortunate that he did so, for the belts of dense palmyra forest, intermixed with groves of cocoanut trees, made the selection of stations very difficult indeed. To carry a zigzag traverse in the vicinity of each ray through the forest was possible, but to clear the straight lines between the stations, down to the ground level, as usual, was found to be impracticable; thus to raise the stations to a sufficient elevation to overlook all intermediate obstacles was the only thing to be done, although the palms grew to a considerable height, and the ground was generally flat. By availing himself of sand hillocks, and constructing an ingenious portable braced stand for the theodolite, and lofty scaffolds for the signals, Major Branfill succeeded in overcoming all obstacles, so that by the end of the first week in March the work of station building and line clearing-to the extent of cutting down or lopping the branches of some of the most obnoxious palms - was complete, as far as Rímnád. The observations proceeded without interruption and were brought to a close by the 1st May.
(8.) Major Branfill's, next care was to extend the approximate series from Rámnád to Rámesweram, with a view to the Ceylon connection. After examining the country, he decided, on account of the increasing density of the palm forest and the rapid narrowing of the land, to utilize the islets of the coral reef which lies parallel to the mainland at the distance of 4 or 5 miles; he thus extended the serics by a succession of quadrilaterals as far as the land's end. Next season the remaining portion of the triangulation to connect the Survey of India with that of Ceylon-a sketch map of which is given in my last annual roport-will, it is to be hoped, be completed; the work however cannot be begun before the end of the month of January, when the violent winds of the north-east monsoon moderate, and open boats-the only craft this Department can afford to entertainmay ply between the islands in the Straits, to supply the signal and observing parties with water and food.
(9.) The out-turn of field work consists of 27 principal stations fixed by 42 triangles, forming 9 polygonal figures (6 quadrilaterals and 3 hexagons) which cover an area of 791 square miles, entirely in the plains, and extend for a direct distance of 90 miles from west to cast. A set of star observations for azimuth was also taken, and 35 secondary points were fixed. I have cvery reason to be satisfied with the vigorous manner in which Major Branfill has carried on his operations, and with his judicious efforts to reduce their cost, hy modifying the structure of the stations of obscrvation, so as to utilize the advantages afforded by the timber
of the palmyra trees, as a set off against the serious difficulties presented by the superabundance of these trees, on the ground over which he was operating.
(10.) For some years past Major Branfill has been making a collection of the oommon place-names met with in Southern India, with their traditional root-meanings and local applications. A list of these will be found in the Appendix to this Report. Similar lists, collected from other parts of India, would doubtless be of much value to the ethnologist and philologer, as well as to the topographer, throwing some light on the language and history of the inhabitants, and even on the physical geography of the country.

NO. II-TRIGONOMETRICAL.

THE OPERATIONS IN THE ASSAM VALLEY.

(11.) Lieutenant Harman relieved Mr. W. Beverley of the charge of this

Pebeonnel.

Licutenant H. T. Harman, R.E., Oficinting Asst. Supdt. 2nd Orudo.

Mr. W. O'Sullivan, Sur, 4th Grade.
J. O. Hughes, Asst. Surveyor 9rd"Grade. party at Shillong, in October 1874, under instructions that he would be required to join the Survey Detachment accompanying the Field Force which was to be sent into the Daphla Fills in December. Thus it was a matter of great importance that he should take the field at the earliest date that it would be safe to do so, and mark out work for his European assistants and Native establishment to perform, during lis alsence with the military expedition. Starting from his Head Quarters at Shillong on the 3rd November, he was able to devote upwards of a month to the preliminary operations of the triangulation in the country between the Civil Stations of Jorhát and Dibrugarh, and to frame instructions regarding the work which was to be carried on in his absence.
(12.) On the 12th December he reached Borpathar, the second encampment of the Field Force, and reported himself to Major Godwin-Austen, of the Topographical Survey Department, who had been selected for the charge of the Survey Party which was attached to the expedition. He accompanied the Feld Force, as Assistant to Major Austen, until the 7th January, when he was deputed to make a reconnoissance of the Ranga Valley and the hill ranges to the cast of the tracts occupied by the Force. Starting from the vicinity of North Lakhimpur, he marched for some distance along the course of the Páns river, taking the most direct and best line to the Daphla villages ir the Ranga Valley, which line, though crossing the outer hill ranges, is more open and easily traversed than the route along the Ranga river. Even here however no roads or well trodden foot paths were found, the country was overgrown with dense forest and jungle, and the progress made in each day's march was very small. It was known that no food would be obtainable en route, and very little at the Daphla villages when they were reached; supplies of food had therefore to be carried with the party, by coolies, and treir daily consumption rapidly decreased the general stock provided for all. Thus Lieutenant Harman was obliged to content himself with a guard of only 12 scpoys; and after reaching the Daphla villages he found that even these men were more than he could feed, and that he would either have to return at once with them, re infecta, or to dismiss them and trust himself entirely to the people of the country. IIe chose the latter alternative, and succeeded in making good friends of the simple mountaineers; and, after completing his survey of their country, he eventually persuaded them to take him back to Lakhimpur by the Ranga Valley route, though at first they stoutly objected to doing so. They represented the track as very difficult, a merc hunting track, not passable for any man with a load, and certainly not for Assnmese coolies, whom they appear to regard with great contempt. Lieutenant Harman found that their accounts of
the difficulties of the route were not much exaggerated, as there were places over which even his dog had to be carried; but latterly it appeared that the chief objections on the part of the Daphlas to taking him by this route were caused by apprelicnsions that they wight thereby incur the enmity of their more powerful neighbours, the Albors, and be punished by them for so doing.
(13.) Lieutenant Harman worked right well, and showed much patience and tact in his transactions with the semi-barbarous inlabitants of a country which no European had ever before entered. He underwent much roughing and exposure, and incurred many risks, but these have been repaid by the success which has crowned his exertions. He has drawn up a very interesting account of his own operations and of the country and people, which will be published by the Surveyor General as an appendix to the Daphla Military Expedition Survey Report, by Major Godwin-Austen.
(14.) Lieutenant Harman had expected that his services with the Expedition would not be required for a longer period than six weeks. But it was not until the month of March, after an absence of nearly three months, that he was able to rejoin his own party and resume the trigonometrical operations. He then found that the amount of progress which bad been made during his absence was not as great as he had anticipated ; several lines had still to be cleared before the observations of the angles could be commenced. He laboured very vigorously to push the work forward, but found the difficulties too great to be surmounted in the short time remaining before the setting in of the rains and the consequent termination of the field season. In many places the forest was very heavy and dense; and worse than all were the occasional patches of jheel-canes "terribly armed with crooked thorns on every surface," through which the native line-cutters, with their wooden sandals and naked legs, could scarely creep without suffering severely, and it was found impossible to clear the lines more rapidly than at a rate of little more than 100 yards in a day. Thus the rains had commenced before Lieutenant Harman was able to begin final observations at the stations between which the lines were clear; and very soon the country was flooded to such an extent as to become impassable. Lieutenant Harman had therefore no alternative but to quit the field and return with his party to his head quarters, at Shillong; he completed only two triangles, after expending an amount of labour and exertion on his work, which would have sufficed for a long line of triangulation in almost any other part of India; much of what was done will however be of future value, and tend to expedite the operations of the next field season.

NO. III.—TRIGONOMETRICAL.

THE SECONDARY TRIANGULATION IN BURMAH.

(16.) In May 1874, I received an intimation from the Secretary to the
 Government of India, in the Department of Revenue Agriculture and Commerce, that the want of proper topographical maps had necessitated the suspension of the Geological Survey in Burmah, that isolated town surveys were being carried out; that Marine Surveys of the coast were shortly to be commenced; and that the government wished me to take early steps for the vigorous prosecution of the triangulation in Burmal.
(17.) Accordingly the party which had recently completed the Brahmaputra Series, as reported last year, was re-organized and transferred to Burmaunder the charge of Mr. W. Beverley, -with instructions to carry chains of se-
condary triangles, from the nearest principal sides of the Eastern Frontier Series, in order to fix all large towns, prominent and permanent objects, peaks, \&e., for Topographical and Geological Surveys, and the light-houses, \&c., along the coast, for the Marine Survey.
(18.) The estallishment was formed into two detachments; one was immediately under Mr. Beverley himself; the other was under his senior assistant Mr. Mitchell, who was now transferred from the Eastern Frontier Series, in connection with which, he had, during the previous season, laid out the design of a secondary triangulation to Pegu and Rangoon. This he was now to finish, while Mr. Beverley worked in continuation, in the country to the south of Rangoon.
(19.) Before commencing his own work, Mr. Beverley examined Mr. Mitchell's selections and found that they required to be modified to some extent. He then reconnoitered the country to the south, and laid out a triangulation down to the coast line near the mouth of the Rangoon river. He took observations to fix the positions of Elephant Point Column and Eastern Grove Light, and various points in the town of Rangoon for the Seaport Towns Survey. He then commenced the observations at the stations, north of Rangoon, connecting his stations to the south with the Eastern Frontier Series, but was unable to observe because of the unfavorable condition of the atmosphere. Two more attempts were made subsequently, on the commencement of the rainy season, but both without success; and the same result attended the resumption of the triangulation along the coast towards China Bakir Light.
(20.) Mr. Mitchell spent much time in reconnoitering the ground and laying out the triangulation to the north of Rangoon, and he took observations from seven stations; but owing to very bad weather, frequent attacks of illness, and other causes, he failed to carry out his share of the operations, and thus Mr. Beverley's work still remains unconnected with the principal triangulation, and consequently does not give any but roughly approximate results. It is expected however that the requisite connection will be made early next season, when the atmosphere will probably be clear and favorable for the observations.

NO. IV.-TRIGONOMETRICAI

THE EASTERN FRONTIER SERIES, BURMAH.

(21.) In previous years the triangulation of this series had been brought

Pebbonnel.

W. C. Rossenrode, Esq., Deputy Superimendent 3rd Grade.

Mr. MI. Hescrley, Surv. 1at Gmind.
"J. C. Clances, Aseistant Surveyor 3̈rd Grade.
down from Prome to the northern portion of the Shoay-Gheen Districts, the terminal side spanning the Sittang Valley at a distance of about 30 miles above the town which gives its name to the District.
During the present year the series has been extended in a south-easterly dircetion, to within 4.0 miles of the town of Moulmein, the stations on the eastern flank resting on the hill ranges which separate the British territories from the Shan States tributary to Siam, while those on the west flank are near the coast of the Gulf of Martaiman. Stations have also been selected in advance, through the Province of Tennaserim, to a short distance below the town of Amherst.
(22.) In Section V of my last Report I have given a very full account of the great difficulties which are met with in conducting the operations of this Survey in Burmal, in consequence of the dense forest and growth of tropical vegetation which is usually met with everywhere, the sparse population, the reluctance of the Burmese to work for hire, and the practice in which they indulge of firing the grass jungles during the field scason, and thus obscuring the atmosphere to an extent which renders all observations to distant points im-
possible. I need not repeat what has been said on this subject, but allusion to it is necessary, because similar difficulties lave attended the operations of the present field season. Moreover some of the stations had to be placed on obligatory peaks of the hill ranges, so far array from the nearest human habitations, and so thickly fringed with forest, that no one was known to have ever reached them; the surveyors had to pioneer themselves with their compasses, and to cut their way onwards through the jungle, scaling great rocks and precipices, without any guide to lead them.
(23.) The out-turn of work comprises a quadrilateral, a double polygon and part of a hexagon, covering an area of about 3,150 square miles and advancing the series a direct distance of about 100 miles. Numerous secondary points were fixed both within and external to the principal triangulation. The preliminary operations for future triangulation were carried over a distance of about 100 miles, and have reached the parallel of Kalćgouk Island, on which a station-site has been selected. The principal towns wherein points have been fixed are ShoayGheen, Pegu, Sittang and Bhiling; a secondary triangulation has been commenced towards the new Civil Station of Paphoon. The out-turn of work would be considered very good in any part of India, under far more favorable conditions for its achievement; under the actual circumstances of the operations it is all the more creditable to Mr. Rossenrode, and to Mr. H. Beverley, by whom the preliminary operations were conducted.

NO. V.-TRIGONOMETRICAL.

TIIE JODHPUR SERIES; MERIDIAN 7212.

(24.) Captain Rogers returned from furlough and relieved Captain Hill

Perbonnel.

Captnin M. W. Rogers, R.E., Officinting Beputy Superintendent 3rd Grade. Mr. W. C. Price, Surveyor 4th Grode. , C. P. 'Torrens, Assistant Survoyor 3rd Grade.
Mr. P. F. Prunty, Assistant Surregor 4th Grade.
of the charge of the party on the 20th November 1874.
(25.) The triangulation was extended north. wards, through the Deserts of Jaisalmir and Bikanir. These tracts are apparently so called because, though inlabited by a comparatively large population during the rainy season and the early portion of the cold weather-when there is still a supply of water in the tanks-they are deserted in the hot season, when the tanks are all dry, and drinkable water is in many parts only to be obtained by being sent for to great distances. The water in the wells is usually brackish and unfit for human consumption; thus water for the survey camps lad to be brought from distances averaging 10 to 20 miles, throughout the greater portion of the scason.
(26.) T'he out-turn of work has been very good and creditable to Captain Rogers and his assistauts. The principal triangulation was advanced 104 miles along the meridian by a series of polygonal figures, consisting of a pentagon, two hexagons and one double polygon, which cover an area of 2472 square miles. An astronomical azimuth of verification was measured at one of the principal stations. The preliminary operations, for the selection of the sites of stations in advance, werc carried over a distance of 61 miles, towards the Sutlej Series. The positions of the towns of Bikanir and Pugal, and other points, were fixed by sccondary chains of triangles.

NO. VI.-TOPOGRAPHICAL.

THE SURVEY OF KATTYWAR.

(27.) The operations of this topographical survey have been carried on

Pensonnel.
Captnin A. Pullan, S.C., Ofg. Deputy Superintendent Brd Grude. J. MeGill, Esq., Org. Assistant Superine endent 1et Grade.
Mr. F. Bell, Survesor Brd Grade.
N. C. Gwynne, Sur. 4th Gride.
"W. A. Ficlding, Assistunt Sur veyor 2nd Grate.
Mr. W. Oldham, Asst. Surrejor 3rd Grade.
$\begin{array}{lll}\text { "G.T. Hall, Ditto } & \text { 9rd } \\ \text { "II. Corkery, Ditto } & \text { 4lh }\end{array}$
Visaji Ragomali nad 11 Native Surveyors and Apprentices. under the exccutive charge of Captain Pullan, owing to the continued absence of Captain Trotter on duties connected with the Geographical Explorations in Eastern Turkestan and other regions beyond the British Frontier. The year has been uneventful in the history of the survey, but good progress has been made, both in the field work and the mapping.
(28.) The out-turn of final topographical work, on the scale of 2 inches to the mile, by this party embraces an area of 1749 square miles, comprising parts of Prants Hállár and Machlıu Kántlá in Kattywar and a portion of the southern sea-board of Cutch. The area is less tian what was covered last year, but this is satisfactorily accounted for by Captain Pullan, in his report. The triangulation executed in advance for the operations of next year covers an area of 2,200 miles, 200 of which are intended for the Survey of the Cutch Coast. In addition to the above, 1,117 linear miles of traversing were executed in order to demarcate the boundaries of Native States, and to check the details of the plane table survey.
(29.) In my Report for 1872-73, para. 47, I stated that when the operations of this survey should reach the shores of the Gulf of Cutch, every effort would be made to connect them with the survey of that Gulf which was made by Lieutenant Taylor, I.N. This has now bcen done, and the agreement between the two surveys is reported by Captain Pullan to be very satisfactory.
(30.) As regards the mapping, four new sheets, Nos. 32, 33, 34 and 35, have been drawn in such a manner as to be suited either for reproduction on the full scale of 2 inches to the mile, or for reduction by photography to the 1 -inoh scale.

NO. VII.-TOPOGRAPHICAL.

THE SURVEY OF GUZERAT.
(31.) During the present year Major Haig has been carrying on the

Prigonsel

Mnjor C. T. Huig. R.E., Depuly Superintendent End Grade.
Lient. J. E. Gibbs, R.E., Asgistant Supirintendent 2 and Grade.

Mr.J. Pegton, Surveror lat Grade.
"A. D'souzn, " 1 \&t "
A. D. L. Christic, " 41 h "
" C. F. MiAFer, " 4lh ",
" E. J. Comior, Assl. Sur. Iat "
", J. Hickie, "
" (
" C. Mnll, " \quad "
"S. Normin, ", 4 th ",
"A C, Nirman, 4th .,
Gopal Vishun nnd 11 Native Gur-
vejore and Apprentices.

Rryente Stntbyobs.

Mr. T. A. LeMmesurier,
7 Native Surteyora. system of operation which has been very fully described in Section VIII of my report for last year, wherely all surveys of British Iands, which had been previously made in detail for fiscal purposes, by the Bombay Revenue Surveyors, are combined together, supplemented by topography wherever necessary, and mapped on the scale of 4 inches $=1$ mile,-while the remaining portions of the British Districts, and the whole of the Native States, are surveyed and mapped on the 2-inch scale, as in Kattywar.
(32.) An area of 1,375 square miles has been topographically surveyed, of which 983 square miles was on the scale of 4 inches to a mile and 392 square miles on the 2 -inch scale. Thus the out-turn of work, as measured by the area completed, is almost exactly double what it was last ycar, when the operations were of a tentative nature, and the best method of .utilizing the Revenue

Survey details had still to be ascertained, by careful trial and investigation.
(33.) In the Dang Forests an area of about 550 square miles was triangulated. A small area in Sheet 79 was also completed with data points, by traversing, and a further area of about 300 square miles of British territory previously triangulated was prepared for survey on the 4 -inch scale, by effecting the necessary connection between the fiscal details of the Revenue Survey and the stations, of the triangulation by means of traversing.
(34.) The country topographically surveyed includes portions of the Dholka, Viramgám and Dhandhuka talukas of the Ahmedabad Collectorate and of the Limri, Lakhtar, Wadhwán and Cambay States, all which have now been completely surveyed, and appertain to Sheets 81 and 82 of the general maps; also portions of the Ankleswar taluka of the Broach Collectorate and of the Olpad taluka of the Surat Collectorate, appertaining to Sheet 14.
(35.) The mapping has progressed very satisfactorily. Major Haig has introduced a valuable printed form, called the "Section Register", in which all the different stages through which each map has to pass are tabulated, so that it progresses regularly, and passes from one class of draftsman to another, according as the stages are divided among the different classes.
(36.) An interesting report by Lieutenant Gibbs of the country in the Dangs, in continuation of the one which was published in my report for last year, will be found at page 36-a of the Appendix.
(37.) The Surveyor General has expressed very decided opinions against the desirability of making any use whatever of the Bombay Revenue Survey details; he has represented to the Government that, in his opinion, the Guzerat maps, on the 4 -inch scale, in which full use is made of those details, are not as essential for the requirements of the country as maps on half that scale, obtained from more speedily executed surveys, made without reference to the Revenue Survey work; and he has particularly advocated the early procuring of materials for the completion of the sheets of the Indian Atlas, which are engraved on a scale of somewhat less than 1 -inch to the mile. A Committee of Survey and Engineer Officers was therefore appointed by the Government of India to report on the subject. The Committee were not able to agree upon any report; no definite conclusion was arrived at with reference to the utilization of the work of Bombay Revenue Surveys for topographical purposes; and irreconcileable differences of opinion existed regarding the relative cost and utility of surveys on the 4 -inch and the 2 -inch scales. Under the circumstances the Government had adopted a medium course, and directed that the 2 -inch scale is to be employed in future, but that the Revenue Survey maps are to be utilized in the operations.

NO. VIII.-TOPOGRAPHICAL.

THE SURVEYS IN DEHRA DƯN AND THE SIWALIKS.
(38.) These surveys are being made conjointly by a portion of the Ku-

Personnel of the portion of the Kumoun and Garhual Surrey Pary employed in the Dinn. Cnptnin If. R. Thuillier. R.E., Ofg. Deputs superintendent 1st Grato. Lt. St. G. C. Gore, H.E., Ong. Asst. Superintendent: 2nd (7rade.
Mr. C. J. Nenville, Survejor 2nd Grade.
Mr. J. Low, Surveyor 3rd Grade. " L. J. Pocock, Surv. 4th Grado.
" H. Todd, Δ sst. Sur, 1st Grade.
", T. Kinney,
"E.P. Wrixon, ", 2ud G̈rade. il Native Sureegors." maun and Garhwál Party under Captain Thuillier, and by the survey branch of the Forest Department which has been lately created and placed under Captain Bailey-with a view to executing special surveys for the requirements of forestry-and, while under formation, has been temporarily affiliated to this Survey.
(39.) The survey of the non-forest tracts of the Dehra Dún District, by Captain Thuillier and his party, has made good progress during the year, and Captain Thuillicr hopes to be able to complete it, as well as the survey of Jaunsár Báwar, in the next field scason.
(10.) The field operations were commenced early in October and continued to the end of April. 225 square miles of country were topographically surveyed on the scale of 4 -inches to the mile in the Dún. The whole of Jaunsár Bírar was covered with a net-work of triangles, comprising an area of 470 square miles; 398 linear miles of boundary traverses were executed, and 63 miles of check lines were run over the topographical work of the surveyors.
(41.) The country surveyed presents ground of very varied descriptions, from the flat cultivated lands in the vicinity of the River Asan-a tributary of the Jumna, and the main clrainage channel of the Western Dún-to the crest of the Mussooree range, which rises to a height of 5,000 feet above the level of the Dún. The low spurs and broken tracts about the foot of the hills gave an infinity of trouble, both in delineating the features of the ground, and in chaining the boundary traverses; in the latter operation very heavy corrections were required for the reduction of hypothenusal to horizontal values.
(42.) Captain Thuillier reports favorably of the progress of his Native Survcyors, who are said to be improving in the art of delineating ground with the plane table; their traversing work was all reduced in the field and found to stand the usual tests in a satisfactory manner. As the survey advances and the Native Surveyors become better trained, the introduction of this cheap agency may be expected to have a very appreciable effect in expediting the completion and reducing the cost of the work.
(43.) The Index Map of the Delura Dún and Siwalik Survey, which is attached to this report, shows very clearly the extent of work completed and remaining for execution by Captain Thuillier's party. The uncoloured portions of the map represent the forest tracts which have been or are being surveyed by Captain Bailey.
(14.) Captain Bailcy's Annual Report has already been submitted to Government through his own Department, together with my review of his operations. It is here therefore unnecessary for me to say more than that the outturn of topograplyy is about 288 square miles, which has been done on the same scale as the non-forest tracts by Captain Thuillier; the amount of the boundary and interior traversing was 326 miles. The ground operated over was very broken and difficult, more particularly in the interior of the Siwalik Hills, the intricacy and ruggedness of which are probably unsurpassed by hill ranges of the same altitudes in any part of the world.
(45.) The out-turn of topography executed by these two parties may be considered small, as compared with that of other topographical parties working on the standard scale of $1-i n c h$ to the mile, in Native States and in Districts where minute delineation of the features of the ground is not required; or even with that of Revenue Survey parties, working on the same scale and with much attention to detail, but in flat and open country, which requires little or no topographical delineation. In Captain Thuillier's operations the average monthly out-turn of topographical area, during the field season, by a party of plane table surveyors, consisting of 1 European and 2 Natives, was 10 square miles; in Captain Bailey's with two more natives in cach party, it was 7 square miles; in both cases the native surveyors were new hands under training, but the Europeans in the former were, as a rule, older surveyors and better skilled than in the latter. I am satisfied that there was no want of exertion and painstaking in the execution of the operations, and that a larger out-turn could only have been secured by a sacrifice of fidelity and exactness, in the delineation of the ground.
(i6). The conjoint survey will form a map in 42 sheets; of these 18 have been completed and deposited in this office, and 15 have been reproduced to full scale and published by photo-zincography.

himalayan surveys in kumaun and garifwal.

(47.) During the rainy season of 1874, a detachment from Captain

Personnrl.

F. C. Ryall, Esq. Officinting Assistant Superintendent 1st Grade.

Mr. C. H. McaFee, Aristant Survejor lat Grado.

Mr. N. E. Litchfeld, Assistant Surveyor 3rd Glade.

Mr. I. S. Pocork, Aesistant Surveyor 4th Grinde.
Mr. J. F. McCarthy, Assistant Surveyor 4 th Grade.

Thuillier's Party, under Mr. Ryall, was located at Almora, the nearest point to the scene of the future field operations at which the recess quarters of the party could be established. Before the rains were well over, Mr. Ryall and his assistants had to take the field, in order that they might reach the Iofty ground they had to survey, and make the most of the short interval during which the snow line is at its highest and the atmospliere is bright and clear; this occurs between the cessation of the autumnal rains and the setting in of winter weather.
(18.) Mr. Ryall conducted a series of triangles through a stupendous gorge overhung by the lofty mountains of Chirkhana and Husaling ; an undertaking which, he says, required all his skill and nerve. He also supervised the operations of his assistants who were employnd in plane tabling on the scale of oue inch to the mile. The difficulties this little detachment had to contend with in the lofty region in which they were employed, and which were suecessfully overcome, are fully detailed in the Appendix and they reflect credit on all cencerned. Captain Thuillier draws particular attention to Mr. I. Pocock's work in the upper part of the Mana Valley, where the average height of the ground surveyed was over 21,000 feet and the maximum height reached was 22,0.10 feet above sea level.
(49.) The area topographically surveyed comprises 2,176 square miles, and the portion of country triangulated in advance covers 800 square miles. There now remains only about 1,200 square miles in the Mulla Jower, Dharma and Bíyins Valleys to survey, which will complete the unfinished portion of Garh wál. But as the operations in these desolate regions-to which supplies of food and fuel have to be transported from great distances-are necessarily of a somewhat costly nature, their completion has been postponed for the present, and it will not be undertaken until the expenditure can be met by savings in other quarters.

NO. X.

SPIlli' Leveling operations in the madras presidincy.

(50.) Captain McCullagh, on his return from furlough, succeeded to the

Personnei.

Coptain J. R. MeCullugh, REF, Offinating Assistant Supurintendent Jet Grade.
Mr. A. H. Bryson, Assistant Survegar Mrd Grade.

Tiro native recerders. charge of these operations, vice Licutenant Harman who had been trausferred to Assam. He commenced work at the S.W. end of the Bangalore Base, the height of which had been provisionally ascertained by triaugrulation which rests on a determination of the mean sea-level at Madras, by Colonel De Haviland. He then carried a line of levels, viá Túmkúr, Sira, Hiriyur 'Tallak and Rámpur, to to Honur H.S. and into Bellary, from which station the work was continued, viâ Alúr, Adoni, and Máduwíram to Raichore Railway station, where it was closed on the 3rd April 1875. The operations were carried on in a very satisfactory manner, and the aggregate length of the lines completed is 297 miles.
(51.) At Bellary a junction was effected with the line of levels which had been carried from there to the Port of Karwar-on the western coast-by Lieutenant Harman, in the precoding field scason. Captain McCullagh's Leight of
the point of junction is 45 feet greater than Lieutenant Harman's ; but the discrepancy is believed to be in great measure due to inaccuracies in the determinations of the datum points of the respective lines, both of which are provisional only; final results will not be obtained until the mean sea-level las been exactly determined at Karwar, and probably at Madras also; the difference of level between Madras and Bangalore also nceds to be more exactly determined than at present.

NO. XI.-TIDAL OBSERVATIONS.
determinations of mean sea-level in the gulf of cutch.
(52.) The primary object of these operations is to determine the existing

Pebeonnel.

Caplain Bnird, R.E., Ofg. Deputy Superintendent Brd Ginde.

Mr. T. Mendell, Asst. Sur. 1 st Grade.
Nareing Dass, and other Sub-Surregors.
supposed to be the case. few years hence, at the same points, with a view to ascertaining the relations which will then obtain between the land and sea; a comparison between the results of the two series of determinations will show whether any sensible variation of level has occurred in the interim.
(53.) The operations were commenced in 1873; their annual progress, and the several instruments employcd, have been very fully described in my reports for 1872-73, and 1873-74. I may here however repeat that the tidal stations are three in number, and are situated respectively at Hanstal Point, near the head of the gulf; at Nawanár Point, half way up on the northern coast; and at Okhá Point, on the southern coast and near the entrance to the gulf. At each station a self-registering tide gauge was set up, and it was a part of the programme of the operations that the relative levels of the three stations should be determined ly running lines of very carefully executed spirit levels between them. No harbour walls or piers being available, at either place, for the tide gauges to be erected on-over deep water-it was found necessary to set up the instruments on shore, at the nearest points to deep water, and to connect them with the sea by a system of piping, of which the land portion was rigid and the sea portion flexible. Whe fexible piping terminated in a 'rose', which was suspended from a luoy in deep water, while the rigid piping was conducted to the bottom of an iron cylinder, which was sunk vertically-its lower end being closed by an iron plate-into a masonry well over which the tide gauge was erected. The sea water passed freely through the piping into the cylinder when the tide was rising, and lack again when the tide fell, the level of the water in the cylinder being always identical with that of the sen at the same moment, when there was no tir in the piping; by means of a stop-cock which was attached to the highest bend of the piping, any air, which might have accumulated internally-as occasionally liap-pened-could be readily expelled whenever the level of the sca rose above that of the stop-cock, which occurred twice daily. The float of the tide gauge rested on the surface of the water in the cylinder, and its rise and fall was duly registered on the barrel of the gauge. Each station was furnished with self-registering instruments for recording the direction and velocity of the wind and the harometric pressurc. A native surveyor with a few assistants was placed in charge, and located in a hut in the immediate vicinity of the station. Periodical inspections were made by Captain Baird, and by his assistant Mr. Rendell, and on these occasions the clock errors were determined, the cylinders and pipes cleared of any silt which had been deposited in them, and the instrunents thoroughly overhauled.
(5.t.) Much time was necessarily occupied in the construction of the stations and in getting the instruments into good working order. The regular tidal registrations were commenced, at Okbá in December 1873, at FIanstal in March 1874, and at Nawanar in April 1871. It was hoped that they might be carried on continuously for at least a yoar, if not longer, at each station, a slorter period being inadequate to furnish the requisite data for an investigation of each of the principal tidal constituents. Considerable anxiety was however felt as to what might happen during the season of the monsoons, when heavy gales are prevalent; but every precaution was taken to strengthen the woodeu observatories in which the instruments were set up, and to anticipate and provide for all possible contingencics.
(55.) The monsoon of 187 h set in with great severity and lasted long; but the observatories all stood firm, and the tide gauges and the other self-registering intruments remained in good working order, at all the stations, throughout the season. Unfortunately however at Nawanar the entire configuration of the fore-shore became altered, and an extensive sand spit was formed, below the low water level, on the line of piping, which becane completely buried. This occurred in the month of July, and necessitated the suspension of the registrations at Nawanár, until such time as the piping could be extracted and again put into communication with deep water. It was expected that the original configuration of the fore-shore would probably le restored ly natural causes, when the wind veered round to its usual direction, which would oecur soon after the commencement of the cold weather months; but this expectation was disappointed, and, as the cold season wore on, it became only too certain that the piping which lay beyond the low water line would never be recovered. A supply of now piping was therefore obtained from Bombay and attached by Mr. Rendell to the land portion of the original pipe, and by the commencement of the month of March 1875, after a break of nine montlis duration, the tide gauge was onee more in free communication with the sca, and there appeared to be every probability that it would so remain, at least until the setting in of the next monsoon.
(56.) But the station of Nawanar appears to lave been fated to be a trouble and a rexation. Within a fortnight after Mr. Rendell had re-started the tide gauge, he returned, from an inspection of Шanstal station, to see how matters were progressing, and found that during lis alsence considerable clanges had again taken place; the fore-shore had been rapidy shallowing, and the new piping was being fast covered with a deposit of silt and mud, which had nearly reached up to the level of the rose at its outer extremity. He cut it aray at once, and substituted several lengths of iron piping, which were held in suspension above the surface of the shore, by being attached-at a level a little below that of the lowest spring tides-to stakes driven vertically into the ground for the purpose. Mr. Rendell remained on the spot for the next tiro months, taking steps to prevent the rose from being reached by the constantly rising mud and silt; he thus succeeded in getting satisfactory and continuous registrations for the whole of the time, and he checked them by a scries of hourly readings taken previ passu on a graduated staif, which had been set up in the sen, in deep water, in order to afford a means of verifying the indications of the self-registering gauge.
(57.) At Okha station all went on most satisfactorily throughout the monsoon of 1874 and the following ficld season; there were very few lreaks of continuity in the registrations, and they were very short and of no importance. At LIanstal the breaks were more numerous and longer; here the water was very muldy, and not pure and clear as at Ohhit; consequently there was a tendency for a sediment of mud to be deposited in the cylinder of the gauge and in the piping ; this sediment had to be cleared out occasionally and then the registrations were necessarily interrupted; but the breaks in the curves are of nomaterial importance, and they can be filled in by hand from the outlines of the collateral curres, without any risk of significant crror.
(58.) The most trying and difficult portion of the operations was the
carrying out of the periodical inspections during the monsoon of 1874. This had proved to be so arduous, and to entail so much exertion and exposure on the officer on whom the duty devolved, that I felt I should not be justified in requesting Captain Baird to carry on the operations through the monsoon of 1875. I therefore directed him to continue the registrations up to within a few days of the commencement of the monsoon, and then to clismantle all the stations, and remove the instruments. These instructions were duly carried out in the month of May.
(59.) Thus the periods during which the tidal leights have been continuously registered at the three stations, are $16 \frac{1}{2}$ months at Okha, 14 months at Hanstal, 2 months at Nawanár in 187w and 2 months more in 1875. Simultaneous registrations of the direction and velocity of the wind, and of the barometric pressure, were made by the ancmograph and the barograph, which were set up at each station.
(60.) The long break in the registrations at Nawanar is to be regretted. But as the station lies nearly midway up the gulf, it is probable that the values of the difference between the mean level for the periods of actual observation and the mean level for the entire year, which are given by the registrations at Okha and Hanstal, may be safely applied to the results at Nawanarr, to obtain the mean level for the year there. Captain Baird has already done this, and obtained very accordant and promising results.
(61.) During the field season of 1874-75, the mork of inspecting the observatories, rating the clocks, and maintaining every thing in satisfactory working order, devolved chiefly on Mr. Rendell. Captain Baird was principally employed in conducting spirit leveling operations, for determining the relative levels of the datum points of the three tidal stations, and of the stone bench-marks which had been laid down, a year previously, along the lines to be leveled over. The length of the main lines connecting the three tidal stations was 275 miles, which was leveled over independently by Captain Baird and Narsing Dass, in accordance with the rigorous system of operation which has been followed for several years past in this Department; 29 miles of branch lines were also executed, in order to connect the stations of the Kattywar triangulation with the tidal stations.
(62.) In working between Nawanír and Manstal, Captain Baird had to make a considerable detour round the head of the gulf, crossing the Runn between Shikarpúr and Malliá. Several bench-marks were fixed on the Runn, and they will be important points of reference when the operations are repeated some years hence. The existing surface level of the Runn has been obtained at a number of points, for Captain Baird took the precaution of having all the pins on which the leveling staves were set up, driven downwards until their heads were exactly flush with the surface of the ground.
(63.) At the close of the field season, the instruments were taken down and the observatories were dismantled. At each station the vertical iron cylinder, in which the float of the gauge had acted, was left in statu quo, together with a length of about 50 feet of the iron piping extending sea-wards from the cylinder. The cylinder was filled with clean dry sand, and closed above with a thick planking, after which a massive pile of stones was raised over the ground around it to serve the double object of a protection, and an indication of the position for future reference. The three bench-marks in the immediate vicinity of the cylinder, with each of which the datum of the gauge had been connected, were similarly covered over. Finally the several cairns were placed under the protection of the local officials; and it is to be hoped that the cylinders and bench-marks will be readily discovered whenever the second series of operations are commenced, and that they will be found to have remained undisturbed meanwhile.
(64.) Thus the first series of operations, to determine whether the relations of land and sea are constant or changing, is now an accomplished fact. Great credit is due to Captain Baird for the manner in which he has conducted the task entrusted to him. The difficulties he had to contend with, in obtaining exact re-
gistrations continuously for such long periods, were very scrious and formidable; all the stations were situated at points on the coast line which were very far from the nearest habited localities; and the inspections during the season of monsoons, which work was done entirely by himself, necessitated constant travelling during the most inclement time of the year, and entailed an amount of risk and exposure which would tell on a constitution of iron.
(65.) The final reduction of the registrations at each station has been commenced, but it will still take some time to complete. The following prelimis nary results have however been obtained from the combined tidal and leveling operations-viz., that the mean sea-level is higher, by 7 inches, at the head of the gulf, and by 4 inches, midway up, than it is at the mouth of the gulf.
(66.) During the present year the tidal obscrvations which were taken at the Port of Tuticorin, in the year 1871-72,-with a self-registering tide gauge, similar in all respects to those employed by Captain Baird-have been reduced by the harmonic method, by M_{1}. Roberts of the Nautical Almanac Office, who has long been employed in reducing tidal observations for the British Association, and whose gbod services, in aiding Captain Baird in the preparation of his Notes on the Harmonic Analysis of tidal observations, I have already acknowledged in my report for 1872-73. Mathematical expressions have been deduced for each of the several tidal constituents, by means of which the height of the tide, at any moment, may be computed with great exactitude.

NO. XII.-GEODETIC.

ELECTRO-TELEGRAPHIC DETERMINATIONS OF LONGITUDE.

(67.) In consequence of Captain Herschel's absence from this country, on leave to Europe, and of the services of Captain Campbell having been placed at the disposal of Colonel Tennant for an entire year-to assist in the operations connected with the observations of the 'Transit of Venus at Roorkee-the differential determinations of longitude by the electro-telegraphic method, which were commenced in 1872-73, have been suspended, and the two assistant surveyors and small native establishments employed on them were transferred temporarily to the parties under Major Branfill and Captain McCullagh.
(68.) Captain Campbell's services were replaced at my disposal at the end of April, when the field season of 1874-75 was so nearly ended that it would not have been practicable to resume the electro-telegraphic operations. Captain Camplell came up from Roorkee to Mussoorce to frame with me a programme of operations for the following field scason, to he undertaken by himself and Captain Heaviside, whose services would be shortly available, for the purpose.
(69.) The first part of the programme was to endeavour, during the approaching season of recess, to ascertain the cause of the imperfect performances of one of the Transit Instruments, while cmployed in the operations on the line Madras-Bangalore-Mangalore, and to dispense with the induction coilsinvolving troullesome batteries and frictional elcetricity-which had hitherto been a constantly recurring source of failure and disappointment in the manipulation of the electric chronographs; vide paras 79 and 85 of my report for 1872-73. Both these duties have now been successfully accomplished, as will be seen on reference to Captain Campbell's report in the Appendix. The reduction of a portion of the previous observations-which remained in hand when the party had to be broken up, and has been held in abeyance ever since-has now been completed by Captain Camplell; the final results from the whole of the observations have been found to differ by only 03 of a second of time, from the preliminary results by a portion of them which have been already published.

YARKAND MISSION. TRANS-HIMALAYAN EXPLORATIONS.

(70.) In my report for last year I stated that, on the return of Sir Douglas Forsyth's Mission to Eistern Turkestan, Captain 'Trotter-who had been attached to the Mission on my recommendation, in order to utilize any opportunities which might occur for prosecuting geographical investigations-had returned to the Head Quarters of this Survey, and was supervising the reduction of his astronomical olservations and the compilation of a map of the country, which were being done for him in this Office.
(71.) The map and his Narrative of the Gengraphical Operations, with full details of the results, have already been submitted to the Government, and are published in the Official "Report of a Mission to Yarkand in 1873, under the command of Sir 'I. D. Forsyth, K.C.S.I., C.B.'', which was printed at the Foreign Department Press in 1875. It is now therefore only necessary for, me to give a brief capitulation of the gengraphical acquisitions which were the fruits of the labours of himself, and of the Pandits and other natives especially trained for Himalayan Explorations, who were sent to assist him.

1st. The positions of Káslıghar, Yárkand, Tashkurghán and Kila Panjah (on the River Oxus, in Wákhán) liave been very exactly determined, by astronomical observations; they have been used as the basis of the mapping, and the positions of all other places have been laid down differentially from them.

2nd. The routes from Káshghar to the Chadirkul Lake, on the north, to the Bulowli Pass, on the north-east, and to Marálbáshi, on the east, have been surveyed, the two first by Captain Trutter and the third by Captain Biddulph. The one to the Chadirkul Lake had been previously surveyed by Russian Officers, and it serves as the first connecting link between the British and the Russian Surveys in Central Asia.

3rd. 'The routes from Kishghar to the south-west, to Badakshan and Kabul, viá Tashkurghán and the Pámir Lands, have been surveyed up to Kila Panjahand to points in Waklián and near the sources of the River Oxus, some of which had been previously fixed in 1837 by Lieutenant Wond of the Indian Navy, and others by the Native Explorer who is known as the Mirza.

4th. The course of the Panjah Branch of the River Oxus has been surveyed from Wákhán through Shighnán, and down to Kila Wámar and Pigish in R ishán, wherehy a considerable portion of the remarkable bend in the river, alnng the northern border of Badakskán, of which nothing was known previously, has now been clearly defined.

5th. The routes from Yárkand to Khotan, and from Khotan to Kiria and the Sorghák gold fields, on the road to China, and from Kiria southwards, across the Kuen Luen range and the Thibet plateau to the vicinity of Gartokh and Rudokl, have been surveyed.

6th. Various routes between Ladákh and Eastern Turkestan over the Karakoram and the Kuen Lien ranges have been surveyed, some for the first time, though of others we were alrealy in possession of maps of varying degrees of accuracy, which had been constructed by Messrs. Johnson, Hayward and Shaw.
(72.) All these, and more particularly the surveys of the routes over the Pámir Lands and of the course of the Oxus, are very valuable additions to the geography of Eastern Turkestan; and they are especially gratifying to myself as having been obtained, almost entirely, through the instrumentality of an Officer of this Department, who was attached to the Yarkand Mission on my recommendation, in order to make the most of the opportunities which would be afforded for surveying these interesting, but hitherto badly mapped, regions.
(73.) On the completion of his map and report, Captain Trotter was about to proceed to Europe, when the Havildar who had been deputed to make a survey of the unknown portions of the course of the River Oxus, and the Pandit who
lad been deputed to survey the direct road from Ladákh to Lhása and then to make further explorations, returned to Head Qnarters, almost simultaneously, though from such opposite directions. Wach of them brought with him numerous journals and records of astronomical observations and route surveys, from which maps had to le constructed and the information extracted and put into a suitable form for publication, as has been done by Major, now Lieut. Colonel, Montgomerie in his reports of the Trans-Himalayan Explorations. Believing that this work could not be performed by any one better than by Captain 'Irotter, I asked him to postpone his return to Europe, and to undertake it; and he cordially assented to my proposal, though he was thereby disappointed of the gratification of an early return to Europe, which he had been looking forward to. It is to him therefore that I am indebted for the "Report on the Trans-Himalayan Explorations during 1873-7k-75", which accompanies this report, and of which I now proceed to give a brief epitome.
(74.) Starting from Kabul, the Havildar struck at once to the north, instead of taking the usual circuitous route to the west, by the Bámian pass. He crossed the Hindú Kúsh range by the Sarolang pass, and, descending to Khinjan, took the direct route by Nárin and Ishkamish to Faizabad in Badakslian, the greater portion of which had never before been surveyed. Thence he proceeded via Rusták to Koláb, crossing the Oxus at Samti. His instructions were to follow the course of the Oxus upwards, as closely as possible; but he found that this would have led him away from the main lines of communication and reudered him open to suspicion, and that to advance at all into this terva incognita, it would be necessary for him to preserve his assumed character of a travelling merchant, and to keep to the most frequented roads. He proceeded in a north-easterly direction, viâ Khawáling and Ságri-dasht, to Kila Khumb (the capital of Darwáz) where he again struck the river - here called the Panjah-at the northernmost point of the bend in its course through the mountains, between its rise in the Pámir plateau, and its downward plunge into the plains of Koláb and Badakshán. From Kila Khumb the Havildar advanced for a distance of about 50 miles in a south-casterly direction, along the right bank of the river, making a dctour to Kila Wanj en route; and finally be reached Yazghúlám, the frontier village of the principality of Darmáz. Most unfortunately he was turned back at this point, under orders from the Khan of Darwáz, who happened at the time to be at enmity with the Khan of Shighnin. Thus lis exploration of the river was stopped at a distance of about one long day's journey from Pigish, the lowest point reached by Captain Trotter's native surveyor from the opposite direction. Being ignorant of what this man had already done, and most anxious to complete his survey of the bend of the river, the Havildar eventually returned to Faizabad, and went on to Ishkashim, the well known village on the river, at the eastern end of the bend; he then followed the river downwards, but was again stopped and turned back, this time by the Khan of Shighnán. There is thercfore a gap, probably of about 20 miles, between the work of the Havildar from the west, and that of Captain Trotter's agent from the east, which is to be much regretted; but on the other hand it is a matter of congratulation that so large a portion of the course of the Oxus, which was unknown when that river was adopted as the Northern Boundary of Afghanistán, by the British and the Russian Governments, has now become clearly defined.
(75.) Compelled to return from Yazghúlám to Kolál, the Havildar, instead of directly retracing his steps to Faizabad, struck westwards, through regions, on the north bank of the Oxus, of the geography of which very little was known. His route determines the position of the important town of Kabádián, and proves that the Surkháb River - which rises in the Alai plateau to the south of Khokand, and passes through the principality of Karítigin-joins the Oxus, not near Koláb, as has long been supposed, but at a point about 80 miles lower down. His route survey was carried southwards from Kabádián, -crossing the Oxus at the Iwachik ferry-down to the well known town of Khulm, and thence castwards, viâ Kunduz and Taliklıán, back to Faizabad.
(76.) While the Havildar's observations were being worked out and mapped in this Office, information was received of the Russian expedition to Hissar, in the summer of 1875 . As yet no full accounts or maps, which may have been published by the members of the expedition, have reached this country; but from the "Glance at the Results" by Herr. P. Lerch, which is translated from the Russische Revue, and published with notes by Colonel Yule in the Geographical Magazine for November 1875, it appears that Koláb and Kabádián are two of the points which were visited and fixed by the Russian Officers. Thus a second connecting link has been obtained between the British and the Russian surveys in Central Asia.**
(77.) A Mullah, who had been recently trained by the Havildar, was deputed to explore the course of the Kunar River, from its junction with the Kabul River near Jalálabad, to Clitrál, and then on to its source in the Hindú Kúsh range. This man ascended the river as far as Asmár, where he found any further direct advance impossible at the time, because the people of Asmar were at war with the neighbouring Kaffir tribes. He therefore made his way over the range of hills on the left bank of the river to Janbatai, a place on the Havildar's route in 1870 from the Punjal to Badakshán, which route the Mullah followed as far as Chitral. Thence he struck into new ground, ascending the course of the river, via Mastuj, up to the Baroghil pass; and after crossing the pass he worked up to Sarhadd Wákhán, the position of which had been fixed by Captain Trotter. His work was very carefully executed, and it has slown that the positions for Dir and Chitrál, which were determined by the Havildar, require to be altered by a few miles. It gives the entire course of the Kunar river with the exception of a length of alout 25 miles through the Káffir hills immediately above Asmár.
(78.) Pandit Nain Singh-the Pandit par excellence of Major Montgomerie's 'Trans-Himalayan Explorations, whose name it is no longer necessary to suppress as he has recently retired from active employment-was one of the explorers who were attached to Sir Douglas Forsyth's Mission, with a view to being sent into the countries lying either to the north or the south of the Gobi Desert, should an opportunity present itself. As this was not found to be feasible, he was scnt, on his returu from Yárkand to Leh, on an exploration to Lhása, by a routelying considerably to the north of the one which he had previously taken, and which is described in my report for 1866-67. His instructions were to return to India from Lhása viâ China, if possible, otherwise by some Litherto unexplored route through the Bhotan Hills.
(79.) He left Leh in July 1874, and succeeded in crossing the Thibetan frontier, in the disguise of a Láma, or Buddlist priest. Passing about 15 miles to the north of Rudokl, he travelled nearly due east for a distance of more than 800 miles, over a new line of country, separated from the valley of the 'Tsanpoor Great River of Thilet-by an almost continuous range of snow mountaing, which trends eastwards from the Alang Gángri peaks, in longitude 81°, up to the Ninjin Thangla peaks, south of the great Tengri Nur Lake, in longitude $90 \frac{1}{2}^{\circ}$. His road lay, throughout, over an extensive table land ranging in lieight from 13,900 to nearly 16,000 feet above the sea level, a region containing a few gold

[^0]| By M. Schwartz | | | | By the Bavildar | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Latitude. | Longit | | | Latitude. | Longitude. |
| $877^{\circ} \text { 6́s 83 }$ | $69 \quad 48$ | 24 | | 3760 | $69{ }^{\circ} \mathrm{4B}$ |
| 872423 | 6819 | 15 | Kabádián, | 8728 | 6811 |

The longitudes are referred to the meridian of Greenwich.
flelds, and numerous lakes and streams, and almost covered with rich pastures; the inhabitants are bands of nomads, who dwell in tents and regulate their moved ments by the supply of grass and water available for their flocks and herds. The Pandit struck the Tengri Nur Lake at its north-west corner, and travelled along the northern coast of the lake-a distance of nearly 50 miles-to the opposite corner, whence he turned southwards to Lhása.
(80.) He had spent three months at Lhása on the occasion of his first visit, without being discovered to be a British employe. On the present oceasion, one of the first men he met was a Mulianmadan merchant whose acquaintance he had made at Leh. Fearing that he might be betrayed, he hurried away at once, without waiting for the arrival of a caravan from Lel which was bringing him ample funds for furtier explorations. It was thus necessary for him to abandon all idea of working his way back through Western China, as his remaining funds would barely suffice to carry him back at once to India.
(81.) The most direct route for him to take was happily one which lay considerably to the east of any that had been previously explored. He followed the 'I'sanpo (or Brahmaputra) River for a distance of 30 miles, in a portion of its course through Thibet about 50 miles lower down than the lowest which had been reached by previous explorers, and his observations have enabled the course of the river to be laid down approximately for a further distance of about 100 miles, so that the part which still remains unknown is now materially reduced. He crossed the Bhotan Hills by the route from Chetang viâ Tawang into Assam, which lies nearly north and south on the meridian of 92°. And finally he brought his work to a close at the town of Olálguri in British territory, and, going down the Brahmaputra river by steamer, reached Calcutta on the 11th March 1875. His astronomical and boiling point observations were very numerous and satisfactory, and his work has been excellent throughout.
(82.) Thus a rich harvest of geographical results-now published in detail for the first time-has been obtained from the labours of the Pandit, the Havildar, and the Mullah; and happily it has been acquired without loss of life or serious misadventure, such as have too frequently been met with in these arduous and hazardous explorations.

NO. XIV.-TEE COMPUTING OFFICE.

EXAMINATION, FINAL RTDUCTION AND PUBLICATION OF THE OBSERVATIONS.

(83.) Mr. Hennessey - who has for so many years been in charge of this

Personnel.

J. B. N. Hennesgey, Esq., F.R.S M.A., \&c., Deputy Supit. 1 st Grade.
W. H. Cole, Eeq., M.A., F.R.A.S.,

Offg. Dy. Superintendent 3rd Grade.
Computing Branch.
Mr. W. Todd, Surveyor 2nd Grade.
" C. Wood, " 3rd
" H. W. Peychers, Surveyor" 4th Grade.
Mr. J. Keating, Assistant Survejor 4th Grade.
Mr. J. Kennedy, Aesialent Survayor 4th Grade.
Baboo Gunga Perahad Computer.
Cally Mohun Ghose,
Kally Coomar Chaticrjee and 11 other Computers.

Prinling Branch.

Mr. M. J. O'Connor, Printer. 19 Compositors and 3 Pressmen.

Photozincograpic Aranch.
Mr. C. G. Ollenbach, Zineographer. C. Drson, Photographer.

2 A Pressmen.

Jrawing Mranch.

Mr. (7. W. E. Athinsom, Surregor 3ret Grade.

6 Druftamen, 4 Asst. Draftsmen, and 12 Apprentices and map Colorists. Office, and to whom its present state of efficiency is so greatly due-bas been absent on furlough to Europe since the list January 1875. The honours have been recently conferred on him of being elected a Fellow of the Royal Society of London, and an M.A., Honoris causa, of the University of Cambridge. During his absence the charge of the Office has devolved on Mr. Cole, by whom its varied and responsible duties have been carried on to my entire satisfaction.
(8.1.) The Office has been employed in its usual duties of carefully examining and reducing the obscrvations, and publishing the ultimate results of suoh portions as have been finally treated, and preliminary results of the portions whioh await the completion of further triangulations before they can be finally disposed of. The 3rd and dith Volumes of the "Account of the Operations, \&c.", have been completed and are now in the hands of the binders. They contain full details of the principal triangulation which is contained in the Sectional Figure known as the North-West Quadrilateral, the limits of which are,-on the east, the middle Indian meridian, 78°, -on the south, the western half of the line from Calcutta to Kurrachee,--on the west, the British Fronticr line from Kurrachee to Pesháwar,-and on the north, the western half of the Himalayan Range. Of the Synoptical Volumes-which give the results of the princinal and secondary triangulation for each series included within these limits, in a oondensed form, for the use of geographers and surveyors-three had been published by the date of my last report ; in the present year two more, viz., No. 4, the Gurhágarh Meridional Series, and No. 5, the Rahún Meridional Series, have been published: No. 6, containing both the Jogi-Tílí Meridional and the Sutlej River Series, has been completed and is now in the hands of the binders; and No. 7, containing the North-West Himalaya Sories aud the Kashmir Triangulation has been got ready for the press.
(85.) Another Sectional Figure of the principal triangulation is known as the South-East Quadrilateral; its limits are,-on the north, the eastern half of the line from Calcutta to Kurrachee, -on the west, the central meridian of 78°, on the south, the eastern half of the line from Vizagapatam to Bombay, -and on the east, the coast line from Calcutta to Vizagapatam. I'his section I had fixed on to be taken up, for final reduction, on the completion of the North-West Quadrilateral; and it has now been disposed of in a most satisfactory manner, under the supervision of Mr. Cole, to whose interesting report on the subject (in the first appendix), I must invite attention. The third Figure, known as the NorthEast Quadrilateral, comprises the whole of the country between the one now completed and the eastern half of the Wimalayan range (up to the meridian of 89°) ; its reduction is unw in hand.
(96.) Though Volumes III and IV of the Account of the Operations, \&ce, are now in the book-binders' hands and might be shortly issued to the public, I propose to postpone their publioation until the ompletion of Volume II, which should be issued simultancously with them. That volume is intended to give an historical aceount of the triangulation, and descriptions of the methods of procedure and of the instruments which have bern employed; to set forth the mathematical formule which have been adopterl for the several calculations, and to give full details of the final steps in the reduction of the North-West Quadrilateral, when tho several chains of triangles are regarded, no longer as separate series, but as a single triangulation, which has to be made consistent inter se, and with the four base-lines at its corncrs. A considerable portion of the volume has been comploted and passed through the press, but the part appertaining to the NorthWest Quadrilateral is still in hand. Thes preparation of the volume has necessarily fallen in great measure on mysolf, aud it has frequently had to be laid aside, when other matters of more immediate interest required my attention. Of these one of the most important has been the final reduction of the Pendulum Observations, and the preparation of the results for publication. Happening from my long personal as well as official acquaintance with the late Captain Basevi, to be more familiar than any one olse with the work he had done, and with his ideas regarding the reduction of his observations, I felt it incumbent on me to set aside Volume II-which is on subjects that are familiar to several of the Officers of this Department, who might complete it in case of mishin to myself—and take up the volume whiol is to be devoted to the pendulum operations.
(87.) A great mass of experimental observations which Captain Basevi had made-for the determination of the reduction of the given vibuation-numbers of the pendulums at the actual temperatures and atmospheric pressures under which the swings were observed, to the corresponding vibration-numbers in a standard temperature and in a vacuum-were still awaiting investigation and discussion at tho time of his death; and until this work was completed the final reduction of tho observations at the several pendulum stations could not be performed. I took it in hand about the time of Captain Heaviside's return from England, after completing the swings at the stations in the original programme of operations which Captain Basevi did not live to visit. It proved to be a very formidable task; for, excellent as were the experimental observations and great the care which had been bestowed on them, they presented many perplexing anomalies for examination, and these lad to be patiently investigated seriation, before any final decision, as to the inferences to be drawn from them, could be formed. All these investigations have now been completed, and the whole of the observations at the several stations visited by Captain Basevi and by Captain Heaviside have been reduced accordingly. A descriptive account of the general operations from first to last, of the several investigations just mentioned, and of the methods adopted in reducing the observations, and full details of the observations themselves-with the results obtained after the reductions-have now been completed and printed for publication; they fill 379 closely printed quarto pages, which will probably form part of Volume V of the Account of the Operations \&c., of this Survey.
(88.) It is intended to devote the remainder of the volume to papers by Captain J. Herschel, R.E. F.R.s.\&c. Captains Herschel and Heaviside. Captain Herschel Deputy Superintendent End Grade.

Oaptain W. J. Heariside, R.E., Deputy Superintendent 3rd Grado. is engaged in investigating the reduction of the pendulum vibration-numbers, from the values deduced for the respective levels of the several stations, nature the reduction to sea-level, which is a question of attraction, has never occupiod much time or been of much importance, owing to the fact of the stations having been usually situated at places near and very slightly above the sea. Here on the contrary the selection has, in some cases, been made expressly for the purpose of experiment in the direction of attraction. The stations on the table land of Southern India, and on the skirts of the Himalayas, and more particularly the station of Moré, at an altitude of 15,100 feet in the interior of the Einalayas, are of this kind; and a considerable majority of the stations, on the meridional axis of the Indian continent, are situnted at elevations of upwards of 500 feet. There are also several stations which are either at or very little above the sea-level; for one of the oljects of the operations was to investigate the relations of suboceanic to sub-continental attraction.
(89.) But enquiries of this nature aro far from easy. The calculation of the attraction of a mass of known simple form is often tronblesome; but where the mass is a mountainous district, it is absolutely necessary to make a variety of assumptions, of a more or less precarions character, on the legitimacy of which the result must depend. The principal of these has reference to the configuration of the surface. The effective attraction is separable into two parts of which the chief requires an accurate knowledge of the contours immediately round the station; while the other, depending on the curvature of the earth, does not become sensible for somo distance, and then continually increases in importanceor more correctly, would do so, but for the general tendency of increased area to present a lower average height,-so that it is havdly too much to say that the effect of distant continents must not be entirely overlookel. Thus a knowledge is required in detail of tho masses standiner on given areas, and Captain Herschel has necessarily devoted much time to their estimation. The mean height of about 500 half degree squares have thus been obtained for Northern India, Kashmir, Turkestan and Thibet, by a close study oif the best available maps. It is probable that the area to be dealt with will have to be catended so as to include a great
part of the Indian continent, should it appear worth the labour. Under the oircumstances, there is still much work to be done, before the results of the pendulum operations can be satisfactorily elucidated and prepared for publication.
(90.) On his return from England, Captain Heaviside was employed in this Office, for nearly a year, in completing the reduction of his own observations with the Royal Society's pendulums and in supervising the printing of them and of the greater portion of Captain Basevi's observations. He also completed the reduction of his observations with the Russian pendulums-which had been sent to India to be swung at some of the Royal Society's pendulum stations, with a view to establishing a connection between the operations in India and in Russiaand with Kater's convertible pendulum, which had originally been employed in determining the relations between the length of the seconds' pendulum, and the British Standard Yard, and was re-employed by Captain Heaviside for the conversion of the differential results by the Royal Society's pendulums into absolute values. Full accounts of these operations, and details of the observations and reductions, lave been printed in readiness for publication, either in Volume V or in a supplemental volume; they occupy 181 pages of closely printed quarto. The results have been provisionally reduced to the sea-level, but corrections may have to be applied to this portion of the reductions, after the completion of Captain Herschel's investigations, The result of the determination of the present relations of Kater's convertible pendulum to the Standard Yard, which is now being made in the Ordnanoe Survey Office, Southampton, by Colonel Andrew Clarke, R.E., C.B., is also awaited, to complete the subject, before publication.
(91.) I have every reason to be much obliged to Captain Heaviside for the assistance which he has rendered to myself, and the pains he has taken in completing his own share of the pendulum work. He is norr employed with Captain Campbell in the determination of electro-telegraphic longitudes in the Madras and Bombay Presidencies.

NO. XV.-CARTOGRAPHY.

(92.) The preparation of a 3rd Edition of the Map of "Turkestan, and the Countries between the British and the Russian Dominions in Asia," was commenced last year. Each of the four sheets comprising the map had been entirely redrawn, ou the same scale as that of the two first editions, viz. 1 inch $=32$ miles, and a large amount of valuable and newly acquired information of Khiva and the regions on the eastern borders of the Caspian Sea-obtained directly from the Topographical branch of the Russian War Office-and of the Northern Frontiei of Persia, from British sources, lad been inserted. But the completion of the map was postponed until the results of Captain Trotter's surveys, in connection with Sir Douglas Forsyth's Mission, and of the explorations of the Pandit, the Havildar and the Mullah-which I have deseribed in the Geographical Section of this Report-could be introduced into the map. It was then finished and published.
(93.) A new map of Northern Afglbanistán, and the Countries to the north of the Trans Indus Frontier-on twice the scale of the Turkestan Maphas been preparod under Captain 'Trotter's supervision, to indicate the results of the explorations of the Havildar and the Mullah; it is appended to this report. It is exceedingly interesting, its larger scale permitting of much detail being shown which had to be omitted from the Turkestan Map. Tro maps, compiled from the Pandit's surveys of the routes from Ladakh to Lhasa and thence to Assam, also accompany this report, and contain much new and valuable geography.
(94.) Of other work done in this office I may specify the preparation of Captain Trotter's Preliminary Map of Eastern Turkestan, which has been published with Sir Douglas Forsyth's Report; the completion of the Gazetteer Maps of Kumaun and Garhwál, of 23 Final Charts of the triangulation, in illustration of the Synoptical Volumes, and of 5 Preliminary Charts of triangulation which as yet bas not been finally reduced; and the revision of the Map of Routes in Northern India. A tabular statement of the work is given at the end of the first appendir.
(95.) It now only remains for me to acknowledge the valuable services which have been rendered by my Personal Assistant, Mr. H. Duhan, who has relieved me of a considerable amount of official routine work, that would otherwise have taken up much of my time. Mr. L. H. Clarke, has rendered good service by the careful and punctual performance of his duties in the corresponding office and as general store-keeper; and he also acted for three months as Personal Assistant, during Mr. Duhan's absence on leave.
(96.) An abstract of the out-turn of work executed by each of the Survey Parties, whose operations can be exhibited in a tabular form, is given on the following page.

J. T. WALKER, Colonel, R.E.,

Supdt. Great Trigonometrical Survey.

Defra Dun; 1876. $\}$

Post-script. 27th March 1876.
Circumstances, which I am not at present in a position to explain, have disappointed me in the expectation of being able to append Captain Trotter's account of the Trans-Himalayan Explorations, during 1873-74-75, to this Report. An account will I trust be published hereafter, and at no very distant date.
J. T. W.

Abstract of the out-turn of work executed by the Great Trigonometrical Survey Parties, during the Offlial year 1874-75.

	1	2	3	4	6	6	7	8	9	
Drechiption of Detalis.				Burmah Secondary Triangu- lation 12-inch Theodolite.				Dehra Dún Topographical Survey.		\dot{H} + H \mathbf{H}
Number of Principal Stutions, nowly fixed,	$\varepsilon 7$	\ldots	13	\ldots	23	\cdots	\ldots	\ldots		63
Number of Principal Trinugics, completed,	42	...	19	...	28		...			89
Ared of Prineipal Triangulation, insquare milce,	791		3,153	...	2,472					6,416
Lengthe of Principin Series, in miles, ...	93		100	...	104	\ldots	\ldots	297
Averago 'Priangular Error, in seconds,	0.55	\ldots	0.48	...	0.47	\cdots	...	\cdots	\ldots	...
Arornge Probnble Lirrors of Angles, in seconds, \pm	0.17	\ldots	0.25	\ldots	$0 \cdot 16$...	
Astronomical Azimuths of verification,	1		1	\ldots	\ldots	\cdots	\cdots	2
Number of Sccondary Stations whose posilions? and heights hare bren fixed,	34		24	5	12	135p	24	98P	26 P	956;
Number of Secondary Stations whose positions i only have been fixed,	1	...	\cdots	14	\ldots	\ldots	\mathbf{s}	\cdots	\ldots	18
Number of Secondary 'Trinngles of which all 3$\}$ angles hare been obserred,	10		24	11	22	211	35	119	23	455
Length of Secondary Serics, in miles, ${ }^{\text {a }}$	28	55	\ldots	\ldots	...	\cdots	83
Areu of Secondary and Minor Triangulation, in equare miles,	1,096		2,249	2,000	681	2,200	559	490	800	10,075
Number of Points fixed bs intersection, but not $\}$ visited,	35	30	40	41	14	$666{ }^{\text {P }}$	92	696	56	1,670?
Length of boundary lines and check lines tra- ? versed, in miles,	\ldots	\ldots	.	\ldots	\ldots	1,117	448	461	...	2,026
Ares topographicully surreyed on seale of 1 \} inch $=1$ mile, iu square miles,	\ldots	\ldots	\cdots	...	\ldots			...	2,176	2,176
" topographically surveged on ecale of 2 \} inches $=1$ milc, in squure miles,	\ldots	..	\ldots	\ldots	...	1,749	392	\ldots	'.'	2,141
" topographicalls surreyed on ecale of 4$\}$...	\ldots	\ldots	\ldots	\ldots	\ldots	983	225	\ldots	1,208
Number of Rerenue Surrey Stations and bound- $;$ arf junction pillars, fixed by triangula- $\}$	\ldots	\ldots	\ldots	\ldots	1	\ldots	\cdots	22	\cdots	28
Do. of Principal Stations selected in advance,	20	\ldots	10	...	7	87
Lengths of Approzimate Series, Principal, in miles,	59	\ldots	100	...	64	\cdots	...	\ldots	...	223
Do. of Approximate Serios, Secondary, in ? miles.	\ldots	38	\cdots	4	55	\ldots	\ldots	\cdots		187
Number of Towers constructed, \ldots... \ldots...	Б		1	...	\ldots	\cdots	\ldots	\ldots	...	6
Do. of Pilars and Platforins constructed for Principal Stations,	19	\ldots	13	...	17	...	\cdots	...		49
Do. of Pillare constructed for Secondary ? Statione,	..	6	3	7	28	\ldots	\ldots	42
Do. of miles of Rnje cleared,	118	106		29	15					268
Do. do. Path-why made,	21	106	190	5 5	1					19817
Do. Hill-tops cleared of forest and jungle,				7		5	...	44
Do. Principal Stations whose elemenls	27		10	\ldots	42					79
Do. Secondary and Traverse ${ }^{\text {Stationas... }}$)										
Do. whose elements were conpuled, \ldots... ,	35	\ldots	50	71	101	\cdots	\ldots	6,871	\cdots	7,128
Do. Preliminary Charta of Triangula-... tion,	1		1	\ldots	1	\cdots	\ldots	\ldots	\ldots	8
Do. Topographical Maps completed, ...			\ldots			16	14	7	13	60
Do. Principal stations placed under off•?	95		...	\ldots	17					52
Do. Stations protected and closed,	12		\cdots		24					96
Do. Pointe fixed by traverse, ... ${ }^{\text {a }}$		\cdots	...	\ldots		P	1,193	6,005		7,1989
Do. Aneroid Determinations of Height,...			\ldots	...	236	148	
Do. Aximulis computed,	1	...	\ldots	...	3	..'	\ldots	...	\cdots	4

APPENDIX.

EXTRMCTS FROM TIUE MARRATIUE REPORTS

OF THE

EXECUTIVE OFFICERS IN CHARGE

OF THE

PLAN of a G. T. SURVEY STATION with OBSERVATORY and SIGNAL PLATFORMS shewing BRACED STAND for the GREAT THEODOLITE, designed by MAJOR B. R. BRANFILL, Dupy. Supdt.
G. T. Survey, for the RAMNAD LONGITUDINAL and MADRAS COAST SERIES (S. Section).

REFERENCE.

A. Masonry pillar and annulus, section and plan,

B Closing pillar in section.
C Wooden braced stand, elevation.
$c^{\prime} c^{\prime}$ Masonry support for ditto, in plan.
D Observalory tent,
E Theodolite box, in elevation and filan.
FP Palmyra platform,

Scale 1 inch $=8$ feet.

Extract from the Narrative Report-dated 30th September 1875-of MAJOR B. R. BRANFILL, Deputy Superintendent 2nd Grade, in charge Madras Party.
(2.) The party took the field at B:urgalore on the 9 th of November, renched Trichinopuly on the 6th of Deconber, Madura on the 12 th and the scene of operations on the 20 th of the ame.
(3.) The Ranad Longitudinal Serices hat been approximately laid out the previons season The Season's worla to be done. as stated in my last Aunual Report (paral. 15). 'llore remained to build most of the stations and clear the rays between them, to select a few of the station sites which had not been precisely determined on, to observe the final anylea, and to close nad deliver the stations. Bewides this the theries had to be extended along the coast to Hímesweram with a view to the Ceylon connection.
(4.) I myself took in haud the completion of the stations and rays of the ficst figure, a quadrilateral. I sent Mr. Belcham to complete the next figure in ad-
Disposition of Purty. vance, also a quidrilateral, and the other two dssistants to build
the stations and clear the rays further in alvance; one on the northern Hank and centre, and the other on the southern flank along the coast.
(5.) I commenced observing on the 99 th December at the stations of Kulayanalliu and Kovilpatti, forming a side on the east Hank of the Great Are (Lat. 9°)

Final observations after three weeks entrusted to Mr. Helehimm and completed final observations at the six stations forming the first two ligures (quadrilaterals) by the 20 th Jimuary, when I was joined by Mr. Beleham, whom I had recalled to take up the observations, a mere mechanical process requiring only the skill and care which I felt sure Mr. Belchan possessed and would use.

I was impellad chiefly to take this atep in consequence of the grent probability of the obsarving overtaking the approsimate series (which eventually it actually did) and because I felt that the most important duty in such difleult country (wooded plains) is the litying out the series in alvance to the best advantage, nud directing the "Approxinate series" operations generally. I romained instructing and assisting Mr. Belcham for a week, when after seeing him through the observations at two stations I felt confident that I might leave him to pursue the duty successfully.
(6.) I then proceeded to inspect Mr. Potter's work on the north liank and centre, and, after selecting a station in advance nnd tracing and clearing the ray to
Tho Erecutive Offeer in charge pro- it, visited Mr. Laseron, and gave him a little practical and personal ceeds to the front. instruction in the art of ray tracing, \&e. I next proceeded to build the stations and clear the rays on the south flank, leaving Mr. Laseron to combinc his efforts with Mr. Potter in pushing on the building and ray-clearing of the centre and north flank, where the most manonry work was required to be done.
(7.) The stations of tho north flank and centre of the Series were hollow masonry pillars 15 to 25 feet in height, bnaked up with earth and gravel as high

Stations of the north flant and centre, hollow masonry pillars with timber souffolds. as practicable to prevent vibration, with a timber seaffolding to support the observatory, run up to a much grenter height for the signal.
(8.) The south flank lay along the serios of sand hillocks and ridges that skirt the coast enveloped for the most part in dense palm forest. The shifting
Ternporary stations of timber provided on tho south llank. hillocks of drift-sand wore not suitablo for permanent principal stations, but by their means, temporarily occupied by slations com- posed of wooden piles, nll the permanent buildings on the coast which could be observed, were fixed, nud the serios rendered a double one throughout. A large markstone wis buried deeply in the sand, and should the sand hillocks remain, may be found for many years to come. I propose having a pile of (coral) stones placed over each such station more permanently to mark the site in case the sand docs shift.

Completion of Approrimate Serien.
(9.) By the end of the first week in March the Approximate Series on the south flauk and centre was complete as far as Rámnád.
(10.) The south coast of Rámnád, from the lands-end (Toni Turei=" boat ferry") opposite Dificulty of the palm forest. Pámban, for 60 miles to the westward, is fringed with a belt of dense palmyra forest, intermixed with groves of cocoanut trees, through which it was very difficult indeed to carry on the series, but there was no alternative feasible. To traverse or "trace" each ray through the forest was possible, but to "clear" it quite impracticable; to overlook it was the only thing to be done, although the palms grow to a height of 60 feet
nad the ground is generally quite flat. At a distauce of a mile or so inland from the sen shore there is a ridge or scries of hillocks, rising from 10 to 50 feet above their base, formed probably by the constant action of the sen breezes blowing the dry surface sand of the beach inland, and depositing it in the palm forest where it is sheltered from farther netion of the wind. After selecting and erecting high flags on the most promising of these sand hillocks for stations, the liue between them bad to be traversed and the height of the intervening hillocks and of the palms carefully noted. The latter has to be doue by climbing the highest palms and examining the height of the forest in the direction of the ray. About midway the most prominent palm in or near the line is sought for and marked with \mathfrak{n} flag, whence the flags of the two station sites at the ends of the line can be seen; a sextant here may be used to measure the angle contained by the rays to the station flags, which, with the traversed (perambulated) distances gives the approximate position of the true ray, and one is able to judge by examining the top of the forest whether the ray is likely to prove practicable or not, and where most clearing is necessary. Having found the direction of the ray, (and if it still seems practicable) a trial line has to be carried, from one or both ends, over the palm tops, the leaves of which have to be cut off leaving a clear gap of 10 or 12 feet in the forest. If the trial line proves all right it bas to be widened some scores of trees have to be cut down and their price, (from one to four shillings ench), settled and paid to the owners.
(11.) As the sand hillocks do not attain the height of the palms, within 15 or 20 feet probably, the eye and sigunls have still to be raised, and for this purpose

Means for raieing eyo of obgeryer and eignals. I prepared a portable braced stand of wood 17 feet in lieight, or else in its place set up palmyra logs steadied by piles of sand, and found they buth answered well, nud thus the eye of the observer was raised more than 20 feet above the top of the sand hillocks. A much greater height was necessary for the signal, and this was obtained by menns of lofty scaffolds, for which as regards length, the palmyra is well suited. The longest, straightest and most convenient trees cat down on the line were selected and split up into halves for the four uprights, and into quarters and eighths for the beams, braces, ties, \&c. The stalks of the palmyra leaves furnish the rope by which the scaffold is put together and made fast. Such a scaffold takes two or three days to erect under ordinary circumstances and costa about Rupees 30 (thirty).
(12.) In one instance I met with a great disnppointment and the loss of several days. The lofty gopuram, or entrance-tower, of the Tirupullani Temple, (a azcred Vishnu fane,) offered a tempting site for a station, eighty (80) feet nbove the ground, by which five rays to adjacent stations orer the palm forest were well commanded. I visitad the place and was occupy as a etatiou the Tirupalláni templo tower. allowed to mount and observe with a amall theodolite from the summit of the tower without demur, and was informed that I might use it as a station, engaging to do no damage that I would not make good. When huwever I came subsequently to prepare the station, nud had been allowed free access a second time, and had taken the necessary measurements, for the platform, \&c., the brahmans and othera attached to the temple, and a large portion of the inhabitnats of the village that profits by the temple funds, turned out to the number of some hundreds, and surrounded $m y$ tents in \boldsymbol{n} state of much excitement, protesting against my again entering the tower, unless \mathbf{I} was prepared to pay many thousands of rupees for its purification, whilst some of then demanded money for the pollution that had already occurred through my presence. I tried for sometime to conciliato them but without effect: they refuesd me further access, locked tho door, and kept a watch to prevent by force any attempt on my part to effect an entrance, which of course I did not make, though it was with much reluctance that I felt obliged to abandon so advantageous a aite. I afterwards learnt that on the day of my first visit a subscription wns made and n sum of one or two rupees collected to enable the priests to perform certain purification ceremonies on account of my visit. On hearing this I sent word to the temple manager that I was ready to pay a rent equal to the amount of any such expiatory sacrifices as they deemed absolutely neceseary, for as long ns wo occupied the tower, but they refused. They added that they had already caused the unhallowed government telegraph wire to be removed from passing too near thcir holy building to a distance of some hundreds of yards, and that they could not let me use their tower at any price. No anger or ill will was displayed on either aide, but I was not prepared for such persistent obstructirenoss, considering I had already established a station on the unfiniehed gopuram at Uttara Koshnmangei, a colebrated Shiva temple only a few miles distant, without any difficulty. The gopuram, or entrance-tower, of any Indian temple is perhaps of less use, from a religious point of view, than the ordinary tower of an old English Church; and in this instance, as is common in Hindu temples, the tower being the sole resort of monkeys and bats, and seldom or never cleaned, was in a most filthy state, and so diagustingly loathsome as to be almost unendurable to any
ono passing through it. That my presence should be thought a grater pollution to the temple than that of these unclenn beasta and birds, reveals a state of mind that is somewhat remarkalife. I lost no time in searching for another point, but the delay caused by the abnudonment of this cost me about a week in the busiest time of the season.
(13.) My next care was to extend the series to Rámesweran with a riew to the Ceylon connection. After a careful examination of the country to the south-

Teatarn exteneion for the Ceglon connection by an island series. enst of llammad, I found that tho increasing density of the palm forest and the rapid uarrowing of the land, obliged mo to attempt to utilize the islets of the coral reef which lies parallel to the shore of tho main land at the distance of 4 or 5 miles. I accordingly threw out a quadrilateral to the southward based on the last, (southeasternmost) side of the triangulation which lay convenient for tho purpose, and found no great diffculty in extending the series by a succession of quadriluterals ns far as the lands-end.
(14.) The islnads are scarcely above the sea at high water of spring tides, and nere componed of coral and sand and devoid of fresl water or anything to live
The islete of the coral reef. upon, although they are covered with a conrse grass, weeds and soine bushes and trees, the last planted by the fisliermen who resort there from the main land: several of them were densely covered with high tangled bushes that cnused much trouble to clenr a ray through. Labor, material, food and water havy to be transported thither by boat, and as constant communication by open bonts or canoes must be maintained, there are only nbout three months, Februnry, March and April, between the monsoons, during which this work can be carried on. The last four stations built and observed at, are of good permanent masonry, as also are two of those in advance, on the islnad of ilamesweram, observed to but not yet observed at. High sealfolds were required at all of the island stations, and in building these only one accident occurred throughout, which I think very fortunate, considering that we were all of us inexperienced in this kind of work, and that our materinls and implements were of the most unwieldy and roughest description. An ordinary palmyra freshly cut down weighs about id tons, nud ench half tree over forty (40) feet in length, probably $\frac{1}{\frac{1}{2}}$ a ton, to raise which we had a working party of from 12 to 20 common coolies and 3 or 4 klassies. A few stout bamboos for sheers, props, \&e., a pair of metal blocks with n stout cotton rope and plenty of "Coir" (cocoanut fibre) rope wero all our implements, but they proved sulficient for tho purpose.
(15.) The one accident alluded to, oocurred by a faulty benm, injured in the felling of the

Accident.

 tree, having been inndvertently used on the top of the scaffolding to support the signal platform. On noticing this I ordered its removal, but it gave way in the process, nad two klassies were precipitnted to the ground from a height of about thirty (30) fect; one of them was hurt a good denl, and is scarcely well yet.(16.) I comploted those stations and cleared all the rays by the middle of April, when I found it necessary to desist, as it was useless to prepare the remain-
Conclusion of the island Approximate Sorice. ing stations in advance, some of which must be temporary stations, (being unavoidably ou hillocks of drift-sand), unless the final observations could be carried beyoud them to two or more perma. nent atatious still farther in ndvance, and this was quite out of the question. I therefore contented myself with visiting the Ielands of Kachi, and Nedurau (or "Delft") and ascertaining that there was no great difficulty in auy of the rays in adrance, as far as the completion of our share of the series.
(17.) Mr. Bolchnm menumhile pushed on the final obserrations with vigour and auccess Progress of the final observations. without interruption, except for one or two days when he overtook the building parties. On renching laimnid s. on the 18th March I joined him for the Azimuth observations, and after two days and nights instructions and assistance, found him quite able to complete the work alone, which he did after I left him without any mishnp. I am glad to say he continued to work steadily, and made good and uninterrupted progress, until he brought the work to a close by the lst May, when I ordered hiun to desist, and to return to quarters, as the entire party was much cylanusted, and a large portion of it aick or ailing, officers included.
(20.) Mr. Belcham has done a good senson's work haring conducted the final obscrrations with the 24 -inch theodolite vory creditably to himself, this being

[^1] his first senson, and quite to my satisfaction. The conduct of the observing and signal parties for the island scries required much forothought aud good arraugement; but he was equal to the occa-
sion, and no mishap or failure occurred to hinder the work throughout.
(21.) Mr. Potter has worked wiilingly and well as usunl, taking an interest in his work. He
has built 7 masonry pillar stations, and traced and cleared 10 miles of rays. He suffered severely in henlth towards the end of
Mr. C. D. Potter.
the senson.
(22.) Mr. Inaseron commenced the season's work under the disadvantage of not having lad my Mr. E. W. Laseron. previous practical experience of ray tracing and clearing in a flat nud wooded country, and he found much difficulty in making the "trial lines," laid off from his ray trace observations, come out right, even after repeated trials, and in this way he lost considernble time. Ho appears however to have worked hard and willingly, and will 1 do not doubt master the difficulty with a little more practice. He has built 3 high sigunl scaffolds, traced nud cleared 64 miles of rays, and built, partially or entirely, 6 masonry stations. He also built closing pillars at, and delisered over charge of, 12 principal stations.
(24.) The country is ns flat as possible, although there is n slight slope down towards the sen of a few feet per mile. Inland the country is generally deep black
Gencral fentures of the country, soil, sc. (cotton) soil, which is immedintely succeeded near the coast by deep sand. The black soil is extremely rotten, becoming impassable in wet weather and nothing but jawning cracks when dry. The former inland, is much wooded and intersected by tanks, and a net work of bunds, dykes, and supply channels for collecting water, and it is every where cultivated with high growing corn crops, so that the view in all directious is obstructed or confined to a limit of a mile or so even when the observer's eye is raised nbove the corn which grows up to ten feet in height. Moreover every tank bed (and tanks abound, witness Indian Atlas Sheet No. 80), is overgrown with n dense thicket of thorns of a kind of hard and matted "Bábul" (mimosa A rabica) that is exceedingly tedious to clenr a ray through.

Except for the occusional sand hillocks, the vicinity of the coast offers no advantage over the inland tract, in as much as it is overgrown with palm forest, thorn jungle and cocoanut groves.
(25.) Compared with previous sensons' trinngulation, with hill stntions, the signals and obserDad signals and grazing rays. vations were very wild, as was to have been expected. Excepting the first few, nearly all the raye were unavoidably very low, grazing within 10 or 15 feet of the ground, and a few much closer still.
(26.) We have eleven rays more or less clear over the land giving a mean factor of positive rafraction $=+0.023$ of the contained arc. I'hirty-six raye graze more or less badly over the land, giving a mean factor of negative refraction $=-0.111:$ the largest of these is -0.289 , and there Factor of Refraction, inland largely negatire : orer sea positire, but smuli. are severnl others about one fourth of the contained arc.

Of sixteen rays over the sea, some clear and some grazing, only one gives negative refraction, (-0.037 ,) the rest are all positive, and generally between +0.020 and +0.040 , the mean being +0.032 of the contained are, or about half that of an ordinary series of hill stations.
(28.) Besides the plan of the Island Series for the Ceylon connection, one hexagon of the Madras Const Series to the north of Rinmnad was laid out, nad three of Extension of the Madras Coast Series. the stations built by Messrs. Potter and Laseron, and the former has also reconnoitred the country with a view to another hexagon in advance, but nearly all the rays require regular tracing and clearing.
(29.) It is much to be regretted that the remaining portion of the Jsland Series for the Ceylon

Plan of work for the enouing season. connection cannot be begun before the end of January when the violent wind of the North-Erat monsoon moderates, and permits open boate, the only craft our funds admit of, to ply between the islands of Palks Straits to the east of the Pámban channel and Adnm's bridge, and keep the signal and observing parties furaished with water and supplies.

I therefore propose employing the strength of the party on the approximate series (Madras Coast) to the north of Rámnád under my own immediate supervision, selecting and building the stations, tracing and clearing the rays between them until enough of the series has been laid out to occupy the observing party until it is time to take up the Island Series, so that as little time as possible may be lost in traversing the interval between the advanced part of the Madras Coast Series, and the uncompleted part of the Ceylon connection.
(30.) I am happy to state that I beliere a considerable reduction may be effected by the adoption of only low masonry pillars and platforms, no larger than absolutely

Reduction of cost.
high masonry pillars with timber
Comparative cost of masonry pillars and timber seallold station. necessary for the sake of permanence, in place of the usual high towers. I commenced the Rámnád Longitudinal Series by building scaffoldings. Ten of these pillars, with a mean height of 21 feet have cost at the rate of $\mathbf{R s} .175$ each and the cost of the observatory platform was Re. 40 maling a total of Re. 215 per atation, exclusive of supervision,
(32.) Latterly I have constructed log or pile stations for the sand hille, and low masonry piers for the ordinary soil, with lofty scaffolds for the signals. I find the average cost of eleven observatory sigual scafolds with a mean height of 27 ft . to be only Rs. 30 per station, and I estimate the cost of low masonry platform stations to be about lis. 20 each, malring a total of Rs. 50 per atation, showing a asaving of Rs. 165 per station. I enclose a plan and elevation of such a station ns I have found best adapted for this series and most economical, shewing the portalle braced stand with observatory and signal platforms.
(33.) I may notice moreover that the 17 ft . stand has proved more steady in a wind than the Atability of 17 ft . braced atand. $\quad 20 \mathrm{ft}$. pierced masonry pillars previously used.
(34.) One disadvantage of the lofty signal scaffolds is the dificulty of plumbing the signal apparatus in a wind, particularly in a high wind. This may be obviatel by using heavier plummets supported by fine brass wire, and by protecting the plumb line by a long strip of cloth or matting

Dieadrantage of lofty signal scaf. folds.
apread on the windward side.
(98.) Mr. Bond, Assistant Surveyor of No. 2 Extra Party, was placed under my orders for temporary employment in the vicinity of "Bangalore," so as to be

Mr. J. Bond, No. 2 Extra Party, temporarily nttached for special employment near Bangalore.

Ordered to execute some minor triangulation in Myaore. ready to join Captain Campbell, R.E., at any time during the season on short notice, in case that officer (who was employed at Roorkee in the observations of the Transit of Venus,) should become available for Latitude observations on the Madras Meridional Series, or other work. I accordingly directed him to execute some minor triangulation in Mysore which was much needed by the fiscal and other surveys, to make a more extended connection of the G.T. Survey principal triangulation with that of Colonel Lambton, and to fill up a gap left in the net work of triangulation of the latter, on the north flank of the Bangalore Longitudinal and between the Great Are and Mangalore Meridional Series, lying to the south of the "Chitaldroog" district of Mysore.
(39.) He left Bangalore ou the 24th November with a party of 12 Klassies most of whom wore quite new to the worl, and starting from the side Rámadevara-betta
-Dodnir-manga H.S. of the Great Arc (in Lat: $13^{\circ} 30^{\prime}$) he proceeded westwards, and in about seven weeks laid out n series of
Taks the field and lays out tho Eeries. thirteen triangles reaching as far as Shimoga S., about 108 miles in length, and covering an area of $\mathbf{1 , 0 9 6}$ square miles. T'wo of these stations are previous G.I'S. points, besides the three initial and terminal stations above nemed, and four of them are identical with old stations of Colonel Lambton's Survey at which the © mark was found.
(40.) Ho then commenced to retrace his stops observing the angles, but was very shortly prostrated by siclness and obliged to return to Bangalore for medical treatmeut. The season was a very unhealthy one generally throughout that part of Mysore and the men of the party sufferod
The observations stopped by aickness for seven weetes.
considerably from ferer, \&c., as well as Mr. Bond.

The delay from this cause was moro than it month. As soon as permitted by the doctor, Mr. Bond again took the field and the observing was resumed on the $28 t h$ of March after an interval of seren weeks during the best season for the observations, and continued till tho end of May when he had completed 10 triangles in all.
(41.) But he now discovered that one of the rays of his approximate series which he had accepted without due examination, on the credit. of Colonel Lambton's Chart of the triangulation in which this ray is shown (and therefore might well lave been supposed practicable) was obstructed, and the obserp-
ing was thereforc brought tonu cad.

An altornative atation was selected but the cloudy menther of the S.W. monsoon had set in, and no farther observations could bo obtaiued. After waiting for three

Rovised.

Bad weather prevente complotion of the Serics. weeks more in the hope of completing the series, I ordered Mr. Bond to return to Bangalore where he arrived on the 24th June, leaving the phete. I trust however that he may be able to complete this work shortly before the enouing field season.
(42.) Mr. Bond appears to have worked energetically and to have done his best. His men were many of them now to the work and insufficiently trained, and he was much delayed for want of good and timely siguals, as well as by sickness.
(43.) I beg to append to this Report an alphabetical list of the proper names of the stations and land marks fixed during the season, together with those of the surrounding villages and some of the neighbouring towns, that will appear on the records of this party. The vernacular (Tamil) form of each tiona and points flied, \&e., given. place-name was obtnined on the spot, as well as its etymology or root-menning.

I do not suppose that all I have given in the list is correot, but it may be accopted as the current local tradition and usnge, and as a near approximation to the approved method of transliteration.
(44.) I apprehend that such information, if faithfully and earefully collected, may prove of much general interest, and of special use towards removing from the face

Root-merainge of the place-names preaumed to bo of use and interest. of the English maps and charts of India, the great diversity of rendering and erroneous spelling that havo hitherto disfigured them, and I propose to give annually such a list as I have now drawn up of the common and particular placo-anmes met with during the field season.

Proper Namet of Places and Common Village Names met with on the S. E. Coast of India chiefly in the Nladura District of Madras (Tamil Country).

Δ grabáram

Alankulam

Alattúr
Ammá

Anakattu

Anappan

A neipár Tívu
Aunapúnaiken-patti
Appanúr
Appá Tívu

Aramanei

Areikulam

Armugam Kottoi
Ara

Aburan

From S., a village, atrect, or quarter of a town, set apart for brahmans.
Vil. pr. n. (?)="Banyan tank" fr. álei, the benyan, and kulam, a pond or tank.
Alei, the banyan (tree), and ćru, a village or town.
Mother, "mamma", Lady. Amman-Kovil=" Lady chapel", a temple or place of worship devoted to one of the female deities or demons.
Eng. "anicut"; fr. Tel. nddamu, between, across, and knttu (to bind) a bund, dam, embankment; also T. anei, a dam, dyke, \&c.
Pr. n. A Canarese cnste or tribe found in Madurn.
Anei=elephnat, párei=rock; and tivu=island (Madura const)= "Elephant-rock Island".
Contr. for annapúra-nayakkan, a man's pr. n., and patti, a fold, or amall village.
Vil. pr. n. (?) fr. appu, a stake or large peg, a wedge; or fr. appan=father, and úru =town, or large village.
"Abbot's Island". Appa=" papa", n term of respect. This ieland is also called "Shéra mudili" (loc. corr. for Maulavi) the nome of a Muhammadan saint, whose tomb or shrine is much venerated.
"King's house", a palace; fr, arasan, a king, and manei, a house, dwelling.
Written árei, an edible water-plant, (marsilen quadrifolia), but stated to mean "six tanks", as if fr. T. áru, six, and kulam, a tank, reservoir.
"Six faced (one's) fort"; áru =six, and mukhnm; fr. S., the face; a name of Kartilseiya, the War-god, Subramanya.
A river. Corn. use aqmo ne for sis; in comp. árr, pronounced. átt: see below.
Fr. M., a demon,

Athodei
"River course"; fr, fru q. จ., and odci, \AA course (fr. otu=run, drive).
Attánkarei
"River bank" or "River side"; fr. áru q. v., and karei, a bank, shore.
Atór
A common village name in S. I., possibly for 'álattúr', q. ∇.
"Shepherd's abode"; fr. áyan, a shepherd, pastor; and kudi, a habitation, dwelling.

B is not a letter of the Tamil Alphabet, but p is sounded like it sometimes, as after mand n, and, with v, is used instand of it in foreign words, and also for $\mathrm{p}^{\prime} h$, and $\mathrm{b}^{\prime} h$.

Chadnyan
Chakkili Medu
Chakráloottei

Chattram
Chávadi
Cheri
Chinni appa Dargah
Chippi-kulam

- Daghopa and Dahgop

Dalaváy-puram
Devipattanam
Dhans-kodi
(?) Pr. n, of a caste or tribe in S. I., crroneous for kadaiyen.
"Currier's mound"; fr. chakkiliyan, a currier; and medu, a hillock.
From chakrá, S., the discus, Viahnu's weapon (a quoit) and lrottei, a fort.
Vulg. use for chattiram, a native rest-house. Hind. $=$ chhattar.
The Anglo-Jndian "choultry" of old writers, a native rest-house for travellers.
An assemblage, a hamlet, a amall village; allied to C. keri, a street, row, cf. H. kherá, Ar. and H. karya, a hamlet or amall village.
(?) "Papa Chini's Dargah" (Muhammadan shrine), s pr. n.
"Shell tank."; fr. T. chippi, a little shell.
S., fr. doh, the body, and gup, to hide; a Buddhist altar, vimána or slarine (see foot note).
Dalaríy, the minister, or commander-in-chief, in S. I., and puram, a town.
"Devi's town" S., Devi=goddess, n name of Párvati, Shisg's consort, and pattanam, a town, a seaport (?).
"Bows point"; fr. S. dhanas, a bow, and kodi, a point. The extreme S.E. point of Rámesweram Island, a sacred bathing place.

In rulgar colloquial use y is commonly prefixed to e initial.

Endal or Yenthal
Eri
Etteyápuram

A small tank; a com, affix to names of small villages in Madura.
A large street of water, lake, a big tank.
Pr. n., a town and zemindári (estate) of the Ettappan (a Náyakkan) family of Tinnevelly.

G ouly represented in Tamil by k which is pronounced as k when initial, or double, but like g when medial.

Gandha mána-parvatam
Giri

Gopala pattonam

Idam. bádal

Ideiyan
Ilampunam
Iswara

Kachi Tívu

Pr. n. of the bighest point of Rámesweram Island. S., parvata=a hill.
S. Δ monntain in S. I.; com. applied to a hill named in Hiudu mythology or history.
"Cowherd's town (or port)" ; fr. S. gopál, a cowherd, and pattanam or pattinam, q. v.

Perhaps fr. idam, left, as there is a "Valam (=right)-bádal" across the fen close by. Idam also means a place. If for Ithambádal="Succt sonys".
A man of the lierdsman caste, or tribe ; (?) fr. idei=middle= middle-born, i. e., from Iswari's breast.
Corrupt, for llama-nattam. Nattam is the village-site, or building ground.
S. The deity, Supreme God, Lord. In S. I. used for Shivá. "Issuran-koil" $=$ "Shivé's Temple".
"Shingle Island"; fr. Kachehi, a broken shell or sherd; this island is formed of broken cornl.

[^2]"Sea bather"; fr. kndal, the sen, and adi, n player, bather; (fr. a local tradition).
Kadaleiyúr
Kidamangnlam
Corrupt, fr. Radasi=last, final ; ellei, a boundary, limit; nnd úru.
Perhaps fr. kadu, a jungle, and mangalam=prosperity, fortunc. A flourishing village.
Kadavi-Santei, or Kathavu-Chanthci "door, or gateway fair"; fr. kathavu, a door.

Kndeiyákkulam
Kadeiyár (kulam)

Kédu

Kal, Kallu
Kál
Kalak kudi
Kalari
Kaliman gundu
Kallan

Kammai, for Kanmáy

Kamma-patti

Kammaya-naiken-patti
Kánjarangudi
Kappal-madei
Káppiliyan
Karei
Karisal-puli
Karshá-Kulam
Kagarangundu
Katari (or kithari)-Amman Tíru

Kidáthirukei

Kilakarei
Kila-kidúram
Kile
Kodi-kánal

Kodi-medu
Kodumudi
Kokkádi
Kombn-úthi
Koneri
Kottan Kulam
Kotrei
Kovil or Koil
"End tank"; fr. lradei=end, (market). The root-menning is last (boro)= low caste. The Kadayar are below the Kallar.
"Kadeiyan's (tank)"; a caste or tribe of fishermen (mostly Christians now) about Rémesweram.
A barren place, jungle; an untilled or un-irrigated field.
A stone, rock.
The leg; a quarter, (cf. H. páon, and páo) a stake, stem, prop, pole, shaft, \&c.
Fr. kalam, e threshing floor, barn. Open field (see Kalari).
Barren or braokish ground, a threshing floor="avena".
"Clay-mound", kaliman, clay, and kundu, a lump, boulder, heap.
One of an indigenous tribe, nddicted to thieving. Plur. kallar, the "colleries" of Orme's history and others.
Com. use in Madura for an irrigation tank or reservoir, a common village name.
"Tank fold"; fr. kanmáy, a tank for irrigntion, and patti, q. v.
Pr. n = " Kammaya Naik's fold". Patti, a cattle fold, henco, 8 smoll village.
Pr. n. (?) fr. lcanjiram=" Strychnos nux vomica", and kudi, a habitation, dwelling.
An anchorage; fr. Lappal a vessel, a ship, and madei ($?$) allied to madu, a pool, a place in the sea deep enough to anchor in.
One of a Canarese agricultural caste or tribe in Madura, with com. ggnomen "Gnundan" (T. kavandan).
A border, shore, bank. Common aflix to village names.
Karisal=black soil, blackness, or any thing black, and puli= tiger.
Vulg. (?) for Karisara, for karisal, q. v., and kulam, a tank,
(?) for kusavan, or vulg. koshavan, a potter, and gundu, a boulder, rock :="Potter's mount".
Kithari, corrupt. for Catharine="Lady Catharine's Isle", во called from an old R. C. Shrine there.
Kidá (?) short for Tadáthagei, n. of Minákshi ; tiru, holy, and kei, the hand.
"East-shore", v. sup; about the largest seaport town between Tuticorin and Púmban.
"East Kidaram" (?) kidáram=a bowl, copper boiler, \&c.
In comp. $=$ eastern; fr. kile, below, because tho country falls to the eastward.
"Creeper wood" = " Rattan (cane) forest." The first English settlcment on the Palney hills.
"Flag-mount"; fr. sodi, a flag, streamer, a creeper, \&c., and medu, a mound.
"Flag (stafi) poinl"; fr. kodi, a lag, v. sup., and mudi, a crown, crest, topknot.
(?) "Cranes play"; fr. kolcku, n crano, nnd ádi=plnyer.
"Horn blast" or "Horn llower"; fr. kombu, n horn, and úthu, blowing.
"King's lake"; fr. kon=king, and cri, a lake, a large shoct of wator.
The old name of this place is Kuntli-nagaram, once a place of pilgrimage.
A fort. Com. affix to pr. nomes of fortificd villages.
A (Hindu) temple or place of worship (?) fr. ko=king, pastor, and i, a buuse.

Kovil Kulam
Kovil-patti
Kúdal-i
Kudi
Kudisei
Kudi-irupu or Kudiyiruppu
Kudirci-katti-mundal

Kulam
Kulaya-uallúr
Kumára-lcurichi

Kundu-kúl

Kunru
Kurichi or Kurichchi
Kurtálam
Kurusndi
Kuruvi-nattam
Kuttan
Kúttam
Kuttei
Kúvar-kuttnm or Kúvat-kuttam
Latchmi
Letchmi-puram
Lingam
Madam
Madura
Malei
Malei
Maleipatti
Maleswerapuram
Men
Manal
Manapád (?)
Manaar
Mnadalam

Mandala-máuikam
"Temple-pond"=" Church-lake."
"Church-fold"; fr. kóvil, a temple, and patti, a cattle fold, a amall village.
A junction. Com. term for the confluence of riverg.
A house, dwelling.
A small dwelling = huts, cottages,
A dwelling, residence ; com. n. for a small hamlet in S. I., espacialky near the coast.
"Horse-bound-point", local name for the Periapnttanam headland; fr. kuthirei, a horse, and kattu, to bind. It is said a horse sacrifice was made here.
A poud, tank, reservoir of water ; usually for irrigation,
Pr. lsula-Sekbara-n.=" Race head-ornament "; fr. the n. of an early Pándyan king; and nallnúru="good-town"="fair-ville".
Fr. a pr. n. of Subramanya, Kumáran=son (of Shivá), and kurichi =a settlement, villnge.
(?) "Squatting point"; kunthu=setting (on), kál, the leg, (?) going on tiptoe. The W.S.W. pcint of Rámesweram Island, fr. a legend about Hanumán.
Pronounced kundru (and in Mal. kunnu), a bill, a amall hill, a round stone, a boulder rock.
A settlement. Com. n. for a small village or hamlet in S. I. properly on a hill, for hundrachi (?).
(Vulg. "Cou'tallum")=(?) "Stunted Banyane" (? fr, kuttru, ? dwarf) and álei, the banyan.
"Cross-foot"; an island nr. Pámban; so called fr. a R. C. Shrine, (kurukke $=a$ oross) and adi, the foot.
Fr. kuruvi, a bird, a small bird, and nattam, a village site, a village.
A tank, a large pond.
A collection, nssemblage, a crowded group, eluster, \&c.; applied to a collection of huts, a hamlet.
A small tank.
(?) "Noise-tank"; fr. Kúval=cooing, a crowing noise, and (?) kuttam, q. v., applied to a little village of a few inhabitants.
Fr. S. Lakshwi, pr. n. of Vishnu's consort, or Sakti, goddess of wealth, fortune.
"Lakshmi's town".
The sacred phallic omblem, symbol of Shiva under which he is worshipped by Saivas.
Fr. S. and H., math, a school or college for brahmens, a cloister, monastery.
Town and district or collectorate: deriva. doubtful; perbaps more prly. spelt Madhura (Nelson).
A hill, mountain, com. use; hence Malsbar for Malei-war, and Maleiyálam, the Malabar language.
Rain. Hence Malenádu, the Moluád or rainy district of Mysore.
"Hill-fold"; very com. n. for vil. at foot of, or near a hill.
Pr. n. (?)="Hill-gods-town".
Earth, soil.
Sand.
"Sand-hill"; pr. n. of a hendinnd on the Tinnevelly coast between Trichendúr aud Cape Comorin.
Vulg. use for Mannír= \quad town, settlement, fixed abode, fr. mannu to be fixed, lasting, to remain; or (?) fr. manuár=enemies, foes.
Fr. S., a rogiou, circle, district, (cf. L. mundus, the world) "Coromandel" (?) for cholamandnl, cf. tondamendelam, also $=$ a small temple or shrine.
Pr. n. $=$ "Region of gems", or rubies. Mánikknm (fr. S. mani, a gem), a precious stone, gem, a ruby.

Mandapam
Manditop
Mangalam
Mannáli
Mantri
Maraklsayar-pattanam
Máriyúr
Maravan, pl. Maravar

Máyákulnm

Medu (see Metu)
Mela-kal-úruni
Mela-madei

Mele
Melmánthei
Metu or Medu
Mináchi, also in T. Mínátchi
Mídaugudi
Mottúruni
Mudaliyár or Mudali
Medukulattúr
Múkkeiýr

Mulli Tívu

Mundel or Munthal
Murugei-talei
Musal Tivu
Muttupettei
Multúruni

Nadu

Naduvupatti
Naiken
Nája-mundel
Nallatanai Tísu

A covered court or hall, built with pillars, a rectangular open. sided hall, before or near a temple.
Pr. n.; fr. mandi=a monkey, and toppu, n grove, n "tope".
Matrimony, praise, delight; com. affix to pr. ns. of wealthy villages of brahmans, rich in rice fields $=$ a flourishing village.
Pr. n. of an island, perhaps fr. its being composed of manal=snnd.
A chief counsellor, prime minister; a com. prefix.
"Skippers' enon (or port)"; fr. marakkalam, a ship, (mara, wood, and kalam, a vessel), marakkaya=ship-owner.
Once a large seaport town on the Gulf of Manar.
Pr. n. of a tribe of the inhabitants of Madura, of lamless and predatory habits.
"Everlasting-pond"; fr. máy-á, that vanishes not, and kulam, a pond, tank.
A height, \&e., comly. pronounced more as if written modu, moedu, or möru; e. g., Nagari Mor, a hill near Madras.
Pr. n.="upper (i.e. uestern)-kal-úruni", (perbaps stone tank); fr. úruni, a common village tank.
"Opper (i.e. west)—sluice"; fr. madei, a amnll water-sluice for irrigation, \&c. The land first watered being nearest to the sluice is called Mel-madei, and the lowest or last watered land is called Kíl-madei.
In comp. mel=up, upon, (upper), hence western, west; because the country rises to the west.
"West manthei" (?) for manthei, mandei or mantei=a herd, flock, (?) assembly.
A height, hillock, rising ground, com. use for a swell of high land.
For S. Mínákshi="Fish-eyed"; a name of Párvati, consort of Shivá=kãli.
(?) "Fish-village".
Pr. n.; fr. mottei, bald headed, bare, (?) from being on an open bare plain, devoid of trees, \&c.
A title of respect, in com. use in Madras, applied to a Tamil caste.
"Old-tank-town"; fr. muthu, ancient, kulam, a tank, and úru, a town.
Pr. n.=" Cape-town" or "Bill town"; fr. múkku, the nose, bill, beak; ($($) во anmed fr. being near a headland.
"Conch (shell)-Island"; fr. mulli, a shankh, or conch shell, once abundant here.
A headland, cape, point, loc. use for munei, a headland, promontory.
Fr. murugei, coarse coral rock, and (?) talei, the head a common affix, cf. leatherhead, gateshead, \&c.
"Hare-Island" ; fr. musal or muyal, a hare. Hares are atill found on Hare-Island at Tuticorin.
"Pearl-toon"; fr. muttu, a pearl (cf. H. moti), and pettei, a (market) town, a village with shops, a bazaar.
"Muttu's úruni" (i.e. tank). Muttu, periaps the name of the man who had the tauk made. A common proper name fr. muttu, n pearl.
A district, country, as opposed to town. In Madura comly. applied to Kalla tracts, (sce kallan). The opposite of Kadu jungle.
"Middle-fold"; fr. nadu, middle, and patti, a fold or small village.
Short for Náyakkan, a title borne by men of I'elugu (or Telioga) race, a chief, leader.
Pr. n. (?) and mundel (q. v.) a headland.
"Stocetwater island"; fr. nalla, good, and tannír, water (properly tonníru=cool water).

Nallúr
Naripeiyúr

Nattam

Nayakkan

Neduvan Tívu
Negapatam
Nellúr
Nerinji-nattam
Nerinji-patti
Nochchüruui
"Good-villc"; fr. nalla, good, fair, and úru, a town.
(?) "Fox-bag-ville"; fr. nari, a fox, pei (or pai), a bag, and diru, a town or village.
The village site, ground reserved for building on. Com. village name in S . I .
Fr. S. náya, a leader=náyn, guiding. In S. I. a title of warlike Telingas, (the "Poligars")=chief, leader; allied to náyar, the honoured Sudras of Malabar.
On old mape "Nedücn", locly. pronounced Nedum=" Long island".
Vulg. for Nága-pattanam. Nága, suake, "dragon", and pattanam, a town, (?) a seaport town.
"Rice town", fr. nel, raw rice, "paddy", and úru, a town.
"Thistleham" or "thornville"; fr. nerunjil (vulg. "nerinchi"), a weed benring a thorny seed: (tribulus terrestris).
"Thistlefold." See above.
Fr. nochchi, a medioiual tree (vitex negundo), and úruni $=a$ tank or well.

In Tamil wis rulgarly prefised in pronouncing words beginning with o.
Oppilán Pr. n. =(7) "the ineomparable"; fr. oppu=likeness, comparison, and illádavan=one destitute of,="he who is without". (1)
Ottangudi
(1) "Builders' village"; fr. ottan, a well digger, or builder (a caste), and kudi, a dwelling.

Ottapidáram or Otta-pandáram

Fr. a man's name, and a corruption. of "(Alagiya)-pándiya-puram", the ancient name.
P. in Tamil is pronounced like b sometimes, as after m and n, and stands for the labials (Surd and Sonant alike) p, p'h, b, and b'h.

Pád

Pádi
Padu
Pákkam

Palaya

Páleiyam

Pálkulam

Pallam
Pallan, pl. Pallar
Palli
Palli-vásal

Palliamunei

Pámban

Pámbár
Paveiyúr
Paneiyeri-Enthal

Pápánkulam

Pápanísham

Pír

Parambia
Parapana-valagei
Pírei
Pareicheri

Tel. a hill, (1) corruption of \mathbf{H}. pahár, n hill.
A village or town, (in comp.bádi) a rov; com. affix to vil. pr. n. (1) a bar (in the sen).

A place, situation, location, besides many other meaninge.
Com. affix to vil. names near Madras; (${ }^{(1) \text { allied to pakkam T., a }}$ side, vicinity, or (1) to bágam, a division, share.
Old. Cf. Gr. palaios, old.
A place or district under feudal tenure (a fief), a oantonment, military suburb, a village.
"Milk-tank"; fr. pál, milk, (cf. C. nál, and Gr. gala, milk).
A ditch, hole, pit, rarine, water course, hollow, \&c.
A very low enste of labourers in S.I.
A hamlet, also a small town, n village: a fane, mosque, \& c .
Com. use on the S. const for a mosque, place of worship; fr. palli, n place of assemblage, and vísal, a door or gatewny.
Derivation. uncertain: n. of an island said to be named from the mainland of which it perhaps once formed a part.
Fr. S. pámbu, n snake. Pr. n. of the town on Rámesweram Island, at the channel, dividing it from the mainland.
"Snakeriver". A small river of the Madura country.
"Palmyra-ville"; from panei, the Palmyra palm, and úru, a town.
"Palnyyra-climbers' tank"; fr. panei, v. sup. eru, climb, and enthal, a tank.
"Brahmans' tank". Brahmnns aro called pápa, and pápán, for parpan $(3=$ "Seer") in S.I.
Fr. S. $=$ "Sin-extinction", n sacred bathing place noar the lowest cataracts of the Támraparnci river.
(?) for párci, a rock, crag: a common affix to pr. \mathbf{n}. of villages, de.
High ground, a stony mound, gravelly waste, a ridge.
(7) "Rrahmems' retreat"; see plápán, valasei, Tel. a retreat.

A rock, com. use.
"(Vulg. Parcherry)" $=$ "Pariak's hamlet", or quarters; fr. pareiyau, an out-caste, drummer, nad cheri, a hamlet, place.

Parutti
Pirvati

Pattanam
Patti
Pationm
Peiásu-mundel
Perin Kulam
Periapattanam
Periúr and Perár
Perumál

Pettei

Pey-kovil

Pillei

Ponthampuli
Pothikulain
Poy-chal-ld-meyir-nyan-kovil
Pú
Pudu or puthiya
Pudu-madam

Pul
Púlánkál

Puli
Puli
Pulieri
Pulli
Púmurichán

Puram

Puram

Putti Tivu

Púsarnamahallitíru
Púvanágakłanpatti

Raghunáthapuram

Cotton, the cotton shrub.
Pr. n. daughter of Himálaynh, and consort or Sakti of Shiva; also called Durgá, Devi, Bhnváni, Kali, \&c., at Cape Comorin ("kanniya-kumári=the virgin maid") where there is a famous old temple in her honour ; she is also called Bhagavati.
Fr. S., a town, a city, a large town.
A cattle-fold, herdmen's village, a amall village ($=c$. hatti).
A town by the sea or on a river. A seaport town, (a port).
Fr. S. pisácha=" Demon-cape". The northernmost point of Rámesweram Island.
"Great tank"; fr, periya, great, and kulam a tank.
"Great town". This is said to have been an exceedingly large city some centuries ago.
"Grand-ville".
"Great one"; fr. periya, great, and al, a person. A common name for Vishnu in S. I.
A suburb, a town or village with shops, a market town, usually contiguous to a fort.
"Devil's temple". The Shánár (or Sánéns) and other low tribes worahip a demon for god, i.e. a malignant deity.
A child, son, a titie assumed by some of the higher Tamil castes (cf. L. filius ; fr. fl, \&ec.).
Pr. n. (?) fr. pontu, a hole, cave, and puli=tamarind (tree).
"Baggage-pond"; fr. pothi="full of sacks", or packs. A tank where they unpack and rest, \&c.
Pr. n. "The lieless truthful (i.e. most true) lord's temple".
A flower; also pushpam or pudpam from the S.
New, com. use. Pudúr="new town"; Pudu-kottei="new fort", (vulg. "Poodoo-Cottah").
"New College"; fr. the previous, and madam, a school or college for brahmans.
Grass.
"Púlam-branch"; fr. púlám, a plant (the twige of which are used for a toothbrush), and kál=a leg, properly limb-branch.
A tiger.
A tomarind (tree) sourness.
"Tamarind-lake"; fr. puliya (-maram) the tamarind (-tree), and eri, q. \mathbf{v}.
A spot, point.
"Flcuer-broken"; from pú, a flower, (which the coral much resembles), and murichán = plucked or bruised. Name of a channel through the coral reef.
Fr. S. pur, purá and púr, a town, city, a considerable town with brahman inhabitants; waram, or veram is vulgarly used for this word, as in "Conjeveram", for Kanchipuram; "Mauliveram" for Mahá-bali-puram, near Madras.
T. a side, the outside : comly. applied to an outlying village, a suburb, com. T. affix to v. and pr. n. This word is said to have no connection with the previous "puram".
(i) "Hummock Island". Putti und pottel, are applied locally to shoals, reefs and sandbanks in the sea, ef. pottei, a mound or hillock, local usage.
"Portia (-tree)-Shingle Island", puvarasu-marnm=the tulip tree.
"Púva Naik's fold", (pronounced more like Boghauaiken-p.), a man's pr. n., and patti, a fold $=$ a emall villnge.
Pr. n. "Raghunath's town".

[^3]Rajákapálinm
Rámuswámi-madsm

Rámesweram

Rámnád

Reddi

Vulg. for Rajálsal.páleiyam. Rajaikal (plural of Rójai) = kinge, and páleiyam, q. $\quad .,=$ "Kings'ton".
"Ramaswami's College", on the S. const of Madura founded by a former zeraindár.
Tr. S., Rímí, iswara=God, and puram ($=$? " The town of Ráma's lord").
Pr. n. of the zemindari estate and the town com. called by the natives Rámá-qátlá-puram (Lord Ráma's Town) for which it stands.
One of a Telinga (or Telugu) agricultural tribe or caste, of which there are some colonies in Tinnevelly and Medura.
S. in Tamil stands also for ch, j, jh, and sh, and the Sanskrit ksh, and is pronounced and transliterated variously.

Sambutti-yendal

Sontci

Sáyalakudi
Sc- sen- sev-, de. or Che- chen-, de.
Senchadaináthapuram
Sengalancrodei
Scrveikíran

Sethupati

Sevalpatti
Shalli-livu
Shemanúr
Shera-mudali or muthali
Shevelmedu
Shiví or Sivá

Soneiperiyán-Kottei

Sri
Sundaramudeiyán
Suplápuram
Súrangudi
Taleimanár
Taleiyáli
7'ámraparni
Tangamma-puram
Tani-chanthei
Tanni-turei (? toni-turei, q. v.)
Taravei
T'areigudi

Pr. n. Eudal or yenthal, a small tank, com. in Madura.
(Vulg. shandy) a fair. The com. weekly village market of S. I.
(?) "Belle.house" com. pr. n. of vils; fr. cháyal, beauty, and kudi, a dwelling.
A com. prefix meaning red. See following.
"Red-shocked lord's-fown"; fr. sen, red, chadai, matted hair, náthn, lord and puram, town.
"Kcd-water-course"; fr. chengal (sen-kal, red-stone) neru, water and odei, a coursc (fr , odu= run).
The title of the Ahambádiyau, tribe of Madura Tamils., hereditary servants or clansmen of the Sethupatis (Zemindíre of Hámnád).
"Lord-ofelhe-causeway"; title of the Prince of the Maravars, Zemindár of Rámnád; fr. chedu, a causeway $=\Delta$ dam's bridge, and the ancient causeway of Rámesweram.
"Red-fold"; fr. sivappu, red, and patti, a fold, villnge.
"Shingle-island"; fr. challi, brokeu pieces of stone, brick, shell, \&c. Pr. n. perh. derived fr. Shapane, or Sámana, a Jaina eect in S. I.
Pr. n. for maulavi, a Muhammadan worthy, saint, or sage named Shera.
"Red-mound"; fr. sivappu, red, and medu, a mound, high ground.
The 3rd deity of the Hindu triad; Saivas regard him as creator, destroyer and regenerator, and worship him in the form of the linga, his type or emblem.
"Grandee's-spring-fort"; fr. shonei, a (water) spring, periyán = great one and kottei, a fort.
A name of Lakshmi, the consort or Sakti of Vishnu, goddess of prosperity, fortuue.
"Beautiful-Udeiyán"; fr. sundaram = beautiful and udeiyán, a title of the kallan tribe.
Corrupt for Subramanya-puram = "Thon of subra-manya" the Hiudu Mars, god of war, son of Slivá.
Pr. n. of a chief (súman $=$ a hero; fr. S. suria, the sun), and kudi, a dwelling.
(?) "Head of Manaar"; fr. talei, the hend. The Ceglon end of Adam's bridge.
N. of an island; fr. talei, the head.
"Copper-coloured"; fr. s. támra, copper and varna, colour.
"Golden-lady-fown" (?).
(i) "Only-fair"; (?) santei = a fair, market, (vulg. shandy). Old name Taui-cheyum.
"Water:ford"; fr. tamir, water (prop, cool mater), and turei, a ghát, ford, shore, \&c.
(P.vu.) A salt-marsh-swamp. com. use near the Madura coust.
(?) "Landham", or (?) "flat-house"; fr. tarei, the ground, earth, a place, and kudi, ๆ. v. (? a level place, fat).
Tattanadi
"I'arrot-river"; fr. tattci, the green parrot, and nadi, a river.

Tedal or Tidal

Tekkei
Tenkedá
Tenkási
'Teppukulam
I'eri or Theri
Thalaváypuram

Tidar
Tinnevelly

Tiru
Tiruchúr

Tirumalugandán Kottei

Tirupatúr
Tiruppuláni
Tifu
Tíynnúr
Toniturei
Tulkapatti
Turei
Tuticorin
Tutti-nattam
Tutti
Túttukudi

High ground, a dry place in a river or marsh, a heap, swell of rising ground; tidar, titei and tittu all mean very much the same.
Vulg. for terku (ten) south, southern, in oppn. to vada, north, northern.
For ten-kadel="south.sea", a place on the south coast of Kámesweram.
"South Kási", or Benares.
"Raft-tank"; fr. tepprm, a raft on which the idol is floated about,
Local name for the drifting sand hillocks or red sand wastes of Tinnerelly and Madura.
"Field marshal's toon"; fr. Talavíy=Dalaváy, title of the com-mander-in-chief, or minister of a South Indian Native Government.
(Tedal, q. v.) a mound, dry bank in a marsh or river, \&e.
Vulg. Eng. for com. Nat. pron. Tirnaveli, wh. is for Tiru-nel-veli= "Sacred-rice-hedge". The town stands in the midst of rice field.
Blessed, holy, sacred; a name of Lakshmi=good fortune.
(Vulg. "Trichoor") (?) corruption of "Tiru-Shivá-per-úrú" = "Holy Shiva's greas toun".
(?) "Shiva-server's fort"; fr. Tirumál, Holy one, and ukandán, obeyed.
(Vulg. "Tripatoor") for Tiru-pati (vulg. "Tripetty") = secred-lord, and úru.
Pr. n.; fr. tiru, holy, pul, grass, and áni ((?)=wearing) fr. the legend of Rámá having once slept here on the sacred (aacrificial) grass.
An island (on Coromandel Cosst dívi, on Malabar Coast tiv. and div.) fr. S. dwípa=two waters.
Fr. tíynn= low-born, base.
"Boat-ferry", "ship-ford"; fr. toni, a bost, and turei, landingplace, ford, road $=$ ghát.
"Turks-fold". Tulukkan or Tulukkar, as Muhammadane are called in S. I.
A landing place, the ford of a river, the haven of a sea.
Corrupt. for Túttuludi, q. v.
Fr. tutti, a plant ("Sida Mauritana") and nattam a village.
A trifle, insiguificent.
The native name of "Tuticorin", said to mean "scattered-habita. tion" $=$ " winnow village".

U final is so softly sounded in Tamil as to be nearly mute.
Umuriampádu "(Sea)-veed-shore", (?) from the accumulations of sea-weed so common about here.

Uppár

Uppu-tanai-tivu
Uru or Ur
Uruni

Uth

Uttan or Vuttan
Uttarakoshamangoi
"salt river"; fr. uppu, salt, and áru, a river.
"salt-water-island", in oppn. to "Nalln-tanni-tivu" (q. $\mathrm{\nabla}$.) an adjacent island where good water (to drink) is found.
A village, town, country; com. appd. to large villages of Canarese or Telugu people in Madura.
A tank or well. The common village tank, accessible to all in the place.
Com. affix. (for úrru, prond. úttru) a spring, fountain.
V. pr. n. (?).

Pr. n., more fully, "Tiru-uttara-shri-koshamangei", a famous but decaying Shivá temple near Rámnád, about which there is a long legend.
V is used sometimes for b and win writing foreign words in Tamil.
In comp.anorth. By the English called Wada and Bada, e.g. Vadakarei, Wada-k, and Bada-k. "North-bank", North-shore.

Valam-bádal
Valasei
Valei Tívu
Válinokkam
Varam or-Veram
Vásal
Vayal
Veli
Medu Vellaḱra
Velleiyammanpuram
Vembár
Veppem-kulam
Vettilei-mandapam
Vijeyápati

Viláttikulam
Vilvamarattupatti
(?) Perh. "Right (hand)-bidal", in oppn. to Idam-bádal, a vil. to left of the marsh close by.
Tel. $=$ "Removal" $=$ flight from home for fenr of anarmy in the field, $=$ " a retreat", com. n. of a villege so occupied, Vulg. "Walsa".
(?) "Sword-fish-island"; fr, val-min=the sword-fish.
Pr, n. of a hendland S. coast of Madura.
Vulg. colloq. form of puram a town, also waram and weram.
A doorway, entrance, gate; pallivásal, a mosque loc. use.
An open plain, a field, C. bailu. The vulg. "bile," "byle", vail, and boyal, \&c., of Eng. maps.
A hedge, ward, wall; com. affix to villege names, as "Tirnaveli" see "Tinnevelly".
"White-man's-mound"; fr. velli, whiteness.
"White-goddess-town"; fr. vellei, white, ammál, goddess, and puram, a town.
"Margosa river" ; fr. vembu, the margosa or "Nim" tree, and áru=river.
" Mrargosa tank"; fr. veppu, the margosa or "Nim" tree, and kulam, a pond or tank.
"Betel mandapam", written Verrilei (rr prond. $=\mathrm{tt}$) on the mainlnnd opposite to Pámban.
"Vijayás lord", (i. e. Shivé) Vijnyá=" Victorious", a n. of Párvati : hence Eng. "Beejapore" (for Vijayípur) and "Vizianagram" (for Vijayámanagaram).
(1) Vilátti, occas. form of vilá= the wood-apple (Feronia Elephantum), and kulam, a tank.
"Bel tree village"; fr. Vilva-maram (in comp. marattu)=the sacred Bel tree (cratava religiosa).

W is not a Tamil letter, but it is vulgarly pronounced before o initial and u sometimes.
In Tamil y is vulgarly inserted or pronounced before a and e initial.

Yánei or anei
Yelavelankál
Yenadi
Yendal
Yervádi or Ervadi
Yottigal

An Elephant.
(i) "tender thorn branch"; fr. yel $=$ tender, velam $=$ thorn (tree) ("Aeacia arabica") and kúl, the leg, a prop, branch, \&c.
Pr. n. = (l) "why-first" 1
A very small tank, or reservoir com. aflix to pr. D. of villages in Madura.
Pr. $n_{\text {; }}$; ($)$ fr. eru a buffalo, and vádi an enclosure, yard.
Pr. n. (i) for yetti-vayal ; fr. Etti =a bitter and poisonous tree ("Strychnos nux vonica") and vajal, a plain, field, \&c.

ABBREVIATIONS.

$\mathbf{C}=$ "Canarese"; Gr. $=$ Greek ; H. $=$ Hindustani $\mathbf{L} .=$ Latin ; M. = Malayalam ; S. = Sanskrit; T. $=$ Tamil ; Tel. \quad Telugu ; R.C. $=$ Roman Catholic ; S. I. = South India; N., E., S., W. $=$ North, East, South, West; = menns equivalent to ; com. = commonly; fr. = from or derived from; $\mathrm{n} .=$ name; pr. $=$ proporly $; t_{1}=$ town $; v_{1}=$ village $;$ besides others in more common use.

Extract from the Narrative Report-dated 23rd August 1875-of Lieut. H. J. HARMAN, R.E., Assistant Superintendent 2nd Grade, in charge Assam Valley Triangulation.
(1.) I arrived at Shillong from Bangalore on October 4th 1874 and took over charge of tho Party from W. G. Beverley Esq., on October 6th 1874.
(2.) The Party left "Gauhati"", by march to "Jorhát", on November 5th 1874, in charge of Mesers. W. J. O'Sullivan and J. O. Hughes. With a few men 1 took passage in a steamer to "Kamlabari"" dear "Jorhát" and made arrangements for fixing the Treasury building in "Jorhát" from the stations "Bor Bhiti" and "Phakwa Dol", by ruaning ray traces from these points into "Jorhát".-The final rays were each 6 miles in length and were opened out by Messrs. O'Sullivan and Hughes.
(3.) Meanwhile I visited the stations of the side of continuation and the stations "Bor Ghop" and "Gohaingáon" which were selected last geason : and on the sands of the river laid out a triangulation to give data for cutting the ray "Bor Ghop" to "Gohaingáon" and to the Revenue Survey Pillar on the banks of the "Diklu". 'I'his done I selected the position for the station of "Melankur" and obtained the bearing that the right flank ray from "Gohaingaon" should have so as to skirt the forest which borders the old "Dhy Ali". I could not get to the position of the "Dimú" Station, but got near enoagh to warrant the ray being cut through at once as a fiual ray. This line was successfully carried by Mr. O'Sullivan, and he suitably placed the "Dinú" Station at nemily 6 miles from "Gohaingáon". I returned to "Sibságar" on December 2nd and as I was under orders to join the Military Expedition (which bad already left "Narainpúr" for the "Daphla" Hills) I visited the parties at "Jorhát" and reported myself to Major Godwin Austen (in charge of the "Daphla Expedition" Survey Party) at "Borpathár" (campNo. 2) on the 12 th December.
(4.) The force had but a short distance to march, and I did not anticipate being with it more than 6 weeks, but it so happened that I did not get back to my Party until March 3rd, on which day 1 reached "Disaugmuk". Now I had directed that as soon as the rays to "Jorhát" were clear, the party should more on at once to "Sibsagar" and work solely in advancing the approsimate series, because 1 intended to return by "Jorhat", build the station there and take the observations for fixing it : this plan was frustrated, and the angles must be observed on the march up next season.
(5.) During my absence Mr. O'Sullivan was in command of the party, with instructions to observe to any new peaks notalready fixed by Mr. Beverley, but an opportunity did not offer. The rays to the Revenue Survey Pillar on the "Dikhu" were cut. A length for the side "Bor Ali" to "Hor Ghop" obtained, but a mistake crept in, and the ray "Bor Ghop"-" Gauriságar" in consequence fell out a good deal; this ray wns $5 \frac{1}{3}$ miles in length aud bad very heavg forest on it. The ray "Bor Ghop"-"Gohningáon", 7 miles in length, passed entirely over grass country, except in the middlo of the ray where it traversed a belt of trees bordecing the "Darikn" river. The rays on to "Melankur" station from "Bor Ghop" and Gohaingáon were carried up to the left bank of the "Brahmaputra", and the right fank ray from "Gohaingáon" to "Dimú" carried as before stated in para. 2.
(6.) On March 4th I crossed the river and cut the two rays on to "Melankur" till they met; the ray from "Gohaingaion" fell on the apot indicated on the chart, but the line from "Bor Ghop" was considerably out; the final ray to "Bor Ghop" was cut and the station of "Melankur" built by Mr. O'Sullivan (a post station requires 3 days to erect if the materials are near at hand). I ran a ray trace between the "Melankur" and "Dimú" stations, the cutting of the narrow gap took 15 men four full working days, but the fianl ray took 20 men 20 days, Mr. Hughes cutting the beavy forest extending from the "Brahmaputra" to the "Bolemir" river, a distance of 1 mile, while my detachment cut from the "Dimú" side to the "Bolemár". On this ray fell 2 miles of jheel, a formidable obstacle, traversed by elephants with very great dificulty. On March 15 th 1 visited Mr. Hughes, who was then carrying a right flank ray from "Dimú" to "Tengápánia"; this line was for the first $1 \nmid$ miles clear, being across a jheel, then came a huge cane forest for $\boldsymbol{t}^{\text {a }}$ of a mile up to a jheel full of trees of extreme hardness, and the men were working up to their waists in water; I found Mr. Hughes far from well, he had written to say that he feared he would not be able to stay out the season, and some cases of sickness were showing in his detachment, so I remored this party to the banks of the river and Mr. Hughes cut the forest portion of the "Melankur"-"Dimú" ray as above mentioned.
(7.) I had not been able to visit "Tengápúnia" before I left for the "Daphla" Hills, nor had Mr. O'Sullivan the opportunity subsequently, and from a misconception of my letter of instructions, in which I wished the rags to "Melankur" to be completed before advancing, this ray was undertaken without a reconnoissance having been made, and it landed us in trouble; finding so much labor had already been expended on the line I did not like to desert it as in 3 miles more it would cross the old Ansamese raised road, the "Dhy Ali ;" so on March 17th my party shifted to the head of the ray;
the two following days I was on the line and we worked very hard, but accomplished 220 yards only; the jheel cane was terribly armed with crooked thorns on every surface, I have soen no cane like it elsewhere: the natives with their wooden eandals and naked legs could barely creep through the fallen stuff, and they suffered severely. On March 20th I left my party on the ray, and with a few men went to reconnoitre "Tengápánia"; the tract of oountry between the "Dimu" river and "Tengápánia" is interseoted by the "Bolemér" river, several streams, and the old "Dhy Ali"; and has not been surveyed by the Revenue Survey, so to find where the ray would emerge on the "Dhy Ali" I ran a traverse from "Lasua Mírignon"; this done we dragged a boat through the forest and I went down the "Bolemarr" and decided to carry the line on.
(8.) I then selected the stations of "Kherkutia" and "Sisa" and gave off the ray "Melankur""Kherkutia", which Mr. O'Sullivan carried, building the station close to the apot selected. I measured a base on tho sands of the river and loid out a plan for triangulating this side, which work Mr. Hughes executed and I also mensured another long base at "Lasua" to connect on with this work and to find the sides "Kherkutia" to "Sísa". Mr. Hughes now took up the ray "Kherkutia" to "Dimá", of whioh I had already cut a part from the "Dimú" side, leaving $2 \frac{1}{2}$ miles of forest and cane to be cut by Mr. Hughes from the river side.
(9.) On A pril 1st I returned to "Disangmuk" and reported to you my intention of at once taking up observations on the 4 triangles now ready; but reports came in, that the "Tengápánia" ray was still in cane, though better progress was being made. The spring rain set in violently, and I got news tbat an elephant had been lost in the jungles about "Dibrugarh" for five days; so taking some men I went up to "Dibrugarh"; the river rose rapidly and I was able to take my boat every where and so selected the 7 stations necessary to carry the series on to "Dibrugarb" Church tower, and see the country well.
(10.) On A pril l1th I returned to "Disangmuk", and found that my Jemadar, 2 elephante and men from the "Tengápánia" ray, had not returned as ordered; they had not been heard of for 7 days and as it had been raining heavily since April 1st, and all the rivers were up and the country flooded, I went the neat day in search of them; we had rather a rough time of it, but on April 17 th were all safely back at "Dieangmuk". On my journey I visited Mr. Hughes' ray "Kherkutia"-"Dimú" and found it had gone a mile and was in heavy forest and cane. On April 22nd Mr. O'sullivan crossed the river from "Sísa" to aid Mr. Hughes in pushing on this line. On April 25th the ray suddenly got flooded from the overlow of the "Bolemár", and a few days afterwards as the water was still up, I directed that the work should close there for the sensou.
(11.) The forenoon of April 21st I left "Disangmuk' to observe the 4 triangles ready, and so much water was then out that it took us till nightfall to get over 5 miles of the path to "Sibságar." As expected I could not encamp within a mile of any of the stations "Gohaingaon", "Bor Ali" or "Bor Ghop". I had put off taking observations till so late because from December to March they cannot be speedily done, and I thought it most important I should exnmine the country ahead, and get all the stations selected this season up to "Dibrugarh", if possible. I was delayed at "Gauriságar" on account of the branch of a tree on the ray to "Bor Ghop" cutting the heliotrope and giving a grazing ray; and also at "Bor Ghop" on account of the heliotrope at "Gohaingaon" not being visible at the time of minimum refraction; it was difficult to remedy these defects, as all the lines were under water, so after having visited 4 stations and obtained the elements of the side "Gaurisagar" to "Gohaingaon", Irom which the Topographical Survey were taking their triangulation into the Nágá Hille, 1 closed work on May 10th and dropped down the river "Brahmaputra" in my boats to "Gauháti", reaching that place on May 16th, the same day that Messrs. O'Sullivan and Hughes arrived by steamer from "Disanganuk", the steamer having been greatly delnyed.
(13.) Mr. O'Sullivan managed the party satiefactorily while I was in the "Daphla Hills". The amount of final ray opened was 49 miles of which 6 miles were in forest, 30 over Chapori jungle, and 3 of village cutting; he selected the "Dimú" station and huilt excellent post stations at 3 places.
(14.) Mr. Hughes opened out 20 miles of final ray of which 7 miles were in heavy forest, 7 miles of light work and 2 of village clearing: built good post stations at "Bor Ghop" and "Dimú": built the bigh platform for shewing a heliotrope above "Phakwa Dol", and observed the angles for mensuring the side "Melankur"-" Kherkutia" and for correcting the trial ray "Jorhát" to "Phakwa Dol".

Mr. Hughes has not worked this season in the manner I wished and had ehown him; on most of his rays the work oxpended has not been at all judiciously applied nud the labor has been excessive.
(15.) A man mounted on an elephant can rarely see over the surrounding grass, or whatever it is; so I tried to introduce the plan of aligning the main flage by the parts of the flags which overtop the grass, and not by the lower half of the flags which is the usual custom.

A tiny gap is carried as straight as can be done with small hand flage placed at very short intervals, and at evory half milo a man ascends a swall poriablo bamboo framo so as to overlook the grass
and plant a tall flag in the nlignment with the back tall flags: this mothod obviously requires the least grass cutting possible: I have tried the method cnd with success; but this senson, owing to Messrs. O'Sullivan and Hughes being sick and unablo personally to superintend the cutting it has not been employed : again, in carrying a trial ray through forest it is plain that large trees should be avoided by shifting the line n foot or two parallel to itself, but for the same reason this has not been done; so that with exception of the ray "Melankur"-"Dimú" all the rays have been cut through as final rays, which is in great measure the cause of the small progress made, especially as the stations and the heliotropes are placed above the line of grass and the only obstacles are the trees. Before leaving "Gnuhéti" the establishment were put through a course of trying frames of cut bamboos, and any 12 men could construct and erect a stiff frame 50 feet bigh in 40 minutes, of course 50 feet is never necessary, 20 to 25 feet suffices in almost every case.
(16.) The district worked in this season (excepting "Gohaingaon" near "Sibsúgar") has only a small "Miri" village here and there; no local labor worth mentioning was available or procured : next season the "Míri" villages will be fewer in number; when nearer "Dibrugarh" the Commissioner will make epecial arrangements for us. There are no ronds, only one or two paths were found of use ; the main communications are the river and the rays cut; for the former, bonts larger than small dug-outs are very scarce and men not easily found to work them, and a ray cut through forest is almost impassable for elephants. Provisions have to be entirely supplied to the partics nt work from depôte where they are collected, so that to maintain local labor and move it on the work is rather a task. The leeches in April and the swarms of mosquitos about the middle of April were great plagues.
(17.) Of the ray "Kherkutia"-"Dimú" 1 mile remains uncut nnd of the ray "Dimú""Tengápánia" 1立 miles: when this work is done, there will be little cutting on the left bank of the "Brahmaputra", the whole of the remaining lines into "Dibrugarh" are over Chapori jungle, chaurg, and the river.
(18.) We came across several old Assamese embankments and "Alis" (roads) on our lines this year, all covered with tree forest, they are not shown on the maps. While travelling in my boat up one of the jáns (small deep streams) north of the "Dihing" river in search of a suitable site for a station I came upon the trijunction of 3 old "Alis" in the thickest tree forest, but whither they led the "Miris" who accompanied me could not say. Near the "Tengápánia" station is the junction of the "Dhy Ali" and the "Motiúrigarh" (old embankment), and the angle is curiously enclosed with a great circular road.
(19.) The out-turn of area this season is insignificant, but I hope, Sir, you will take into consideration the many retarding influences we had to contend with.

Extract from the Narrative Report-dated 22nd September 1875-of W. C. ROSSENRODE, ESQ., Deputy Superintendent 3rd Grade, in charge Eastern Frontier Series.
(3.) Owing to the difficulty of obtaining carringe and the country being still under water, I sent on the baggage and some provisions in charge of the tindel on the 7 th November 1874, to Jung. jungia, which was to bemy first station of observation.
(4.) I left Moulmein on the 10 th November, accompanied by Mr. Beverley, in boate, reached Sittang on the 30 th November, hired boate at once, and joined my camp at Jungjungia H.S. on the lst December.
(5.) On the afternoon of the lat December the men who had gone to Suplitong H.S. with the signal party, returned with the intelligence that they could not find the path to aecend the hill, nor could they induce the villngers to accompany and guide them. The guide took them to the foot of tho hill and would go no further, for fear of losing limself in the dense grass and tree jungle. I manned a fresh party with axes, billhooks and sickles and ordered them to cut their way and get up to the station as quickly es they possibly could, without waiting or trying to obtain aid from the inhabitants. To wait for assistance was bopeless. Suplitong H.S. is so situated that for 20 to 25 miles in every direction there are no villager.

The party I sent cut their way up and reached the station on the 6th day after leaving camp, and directed their signals the day after clearing the jungle on the summit.
(7.) The observations at Jungjungia H.S. were concluded without further interruption on tho 11th December, Kuladong, The-ye-khu, Myayabengkyo, Kaneindong, and Keokpondong Hill Stations were then risited in succession. From Keokpondong II. S. I had to march to Kambungun Tower Station. The route lay through the extensive Pegu plain coyered with reed and grass jungle : this during the raina
is an immense swamp and it was still met. Even in the middle of January some portions were impracticable for elephants. The march wns circuitous and difficult and occupied 7 daya, the direct distance from station to station being only 26 miles.
(8.) On completing the observations at Kambungun Tower Station on the 25th January 1875, ${ }^{1}$ I marched the next day and arrived at Chaiteo H.S. on the lst February. A description of it is necessary, this hill being held in great sanctity by the Burmans and all the other tribes in the Province.
(9.) Cbaiteo H.S. is 3600 feet above sea level. Stupendous projecting rocks, surmounted with masses of rock, rivet the attention of the traveller on his attaining the summit of this mountain, and he is lost in thought and speculation at the wonderful phenomenon which presents itself. The priests assert that superhuman agency alone has accomplished the miraculous lifting of these huge masses of rock in successive tiers, and that the gods who executed the work, reside beneath them. Each of the above rocks is crowned with a pagoda dedicated to Gaudama the Budhist Deity, and the Burmana, Shans, Karens, and other tribes, make pilgrimages from all parts of the Province to the shrines (pagodas) constructed on this sacred mountnin.
(10.) The Principal pagodn, named Chniteo, is constructed on a rock overhanging the southwostern face of the hill; directly below it is n yawning precipice several hundred feet in depth. The pagoda as it atands on the rock overhanging the precipice gives one the impression on secing it from a distance that it is poised in mid nir. On approaching it however the rock, an immense one, it is seen, has firm hold of the hill side and projects like a rhinoceros horn over the precipice. On this projecting portion the pagoda hus been constructed. This is the principal and most sacred pagoda in which are deposited the bones and a tooth of Gaudama. There is nothing artistic in the edifice itself, the nerve and courage of the artificers commend themselves to the admiration of all visitors who are able to appreciate these qualities. The pagodn is roughly constructed, its defects howerer are lidden by the covering of gold leaf over a thick coating of some black looking adhesive substance which is prepared by the Burmans and used for this purpose to obtain a amooth surface. This substance consolidates and adheres most tenaciously to the structure and the gold leaf put over it is so tenaciously grasped by it that when dry it becomes a solid mass difficult to remove.

There aro several other pagodas which hare tbeir listory, and the pilgrims visit each in succession dnily during the dry months from December to Mny. A grand festival is held annually, during March and April. The day of the full moon in March was this year the grandest day of the festival. Prior to the commencement of this carnival, shode and boothe spring up in all directione all over the hill, constructed by oue or wore members of each community, for the necommodation of themselves and their families. Traders have their stalls mell stocked with every requisite and fubulous prices are renlized by them, the demand increasing as the days run on towards the termination of this festive season. To obtain a blessing, it is necessary to worship at each pagoda and euch pilgrim must at all times use n lighted candle during worehip, the consumption of candles is therefore cuurmous. They sell at $4,6,8,10$ and 12 annas each, the former prices are obtainable during the first month, and the latter during the succeeding month, After the expiry of the two months, the festival concludes and the pilgrims retire to their respective homes. Near the principal pagoda is a fissure in the rock, alout 4 iuches in width, 7 feet long, and 15 feet deep, into this offerings are cast, consisting of silver and copper coins, gold leaf, (beaten gold) rubies and other stones of lesser value. This fissure is the treasury bos of the Budhist Deity Gaudama. On the pilgrime retiring, after making their offerings, men with long thin rods with bird lime nttached to the ends, endenvour to secure for themselves the coins and other vuluables cast into it, whaterer adheres to the rod is brought up and appropriated. Cluths of cotton and ailk are also offered, should the cloth be of great length it is wrapped rouud the pngodn, the smaller pieces do duty as flage, strean mers and bamers. Cocomnuts and plantains and food are the usual offerings to the priests and monke.
(11.)" A well 20 cubits deep has beeu aunk near one of the pagodns, this feat was nccomplished by a aingle man working daily for 6 ycars through the rocky strata; he was rewarded for his patience and perseverance by hitting upon a spring which provides a plentiful supply of water, and the well has never been known to be dry.
(13.) After completing the observations at Chaiteo H.S. I had to visit Toungoundong H.S. The routes to it were very circuitous and would have occupied me 9 and 10 days to reach the station. I ascertained that an old road through the hills was still partinly in use which would save me 5 stages. I had this path, for it wns nothing more, cleared, widened, aud the overhanging branches removed, and although the marching was difficult and tedious and occupied 8,10 and 12 hours daily, 1 saved $\bar{\sigma}$ days by adopting it.
(17.) Suplitong F.S. was dreaded by every man in the native establishment. Thoy had heard how Mr. Becerley had fared thero the previous aenson; how the men with the signal lamps and Leliotropes had been dotained in a howling wilderness, in tho oarly part of tho season, until re-inforced by me;
how the men 1 had sent cut their way up to the station; how members of this party had returned sick and disnbled, and suffered from fever for 2 montlas, one baving died a raving maniac from fever contracted there; how Mr. Clancey who had cut the road, nearly succumbed from fever and how all his mon, public and private had been prostrated and sent to Hospital, one having died there. His servants and Interpretar had deserted, and another Interpreter I had sent him had taken his discharge. Tho esaggerated accounta given by the men who bad been there, of the dangere and difficul. ${ }^{1}$ ties to be oncountered on the journey to Suplitong made such an impression on the minds of the men of my oamp, that they dreaded tho iden of going there. Disheartened and desponding they commenced the marol. They were well fed and cared for. The preparatory arrangements had been well made for going and returning, the bealthiest time was chosen after the jungle bad been fired, and the difficulties and dangers, which were so appalling became less and less as the camp proceeded onwards. The summit was attained, the theodolite put up and the observations were completed the third day and we descended the bill returning by the same road and encamping at the same spots.
(19.) From Suplitong I proceeded to Thulu H.S. which I reached on the 10th of March making 12 consecutive stages. Owing to amoke and haze, the observations were not completed until the 21 st I then visited Chaideo H.S. where I was detained 7 days from bad weather.
(20.) From Chaideo I visited Kyunkaban Station situnted near the mouth of the Bheling river, bere 1 was detained 8 days. The ray from this to Kalamatong $\mathbf{H} .8$. was 32 miles in length and passed over a large expange of water, the aignals were at first unft for observing; when the weather cleared up I succeaded in getting good signals and completed the observations. This was a most uncomfortable station to encamp at. Standing as it did close on the bank of the Bheling river, near its mouth, in dense tangled jungle difficult to cut and difficult to penetrate. The spot selected for the station was the highest available. A circular clearance of a hundred yarde was made for the encampment. The elephants horses and the sick under the Native Dootor were located in a village 4 miles awny.
(21.) I arrived at Kyunkabun Station on the 4th April during the spring equinox. Two daya after the sun was partially eclipsed. The spring tides on this occasion were unusually high. The first washed over the encampment and submerged it, the platform was the only dry spot, upon which all the baggage, provisions, and other valuables were placed. As soon as the tide receded, a strong scaffold 15 feet high was erected for the baggage, and the tents were pitched upon raised scaffoldinge 4 feet in height. It was most fortunate that no storme oocurred during my stay at this atation, for had one broken upon us and raised the water, as storms generally do, to a great height, wo should ono and all bave perished, for there was not the remotest chance of escape encompaseed as we were by tangled and impenetrable jungle, by the river and by two creeks, which would have proved formidable barriers.
(24.) There is a bar at the mouth of the river and the bore here is more formidable than any I have witnessed in other tidal rivers.
(25.) From Kyunkabun I proceeded to Kathbatong H.S. the centre of the next hexagon ; owing to the emoke and baze with which the atmosphere was impregnated, observations procceded rather slowly. The monsoon set in on the 21st April, with storms and rain, its usual accompaniments. The heavy down pour ushored in fine observing weather and I completed my observations and pushed on to Kalamatong which I reached in four days. Notwithatanding daily showers of rain, I hurried on not to lose the fine weather following rain, but on arriving at Kalamatong I found myaelf enveloped in cloud and mist. The rains had eet in from the first shower which fell on the 21 at April, every day was wet and the clouds and mist delayed mo greatly. I took advantage of every break in the weather and oompleted my observations on the 13th day after my arrival.
(26.) There had been no rain from November to the 20th April, and I naturally expected a long break of a fortnight or three weeks duration between the first ahowers, and the regular setting in of the monsoon, which bout of good observing weather, would, I had boped, enable me to complete the Kathbatong hexagon. In this however I was disappointed I could not visit the two remaining stations of this hexagon owing to the daily rain and the country beooming gradually submerged and Kalamatong which was the highest mountain for miles around, being generally capped with clouds; no signale from it to Mizantong with which it is oonnected, could be obtained. I had no other alternative but to close work and return to recees quarters.
(27.) In a deneely wooded country, aparsely inhabited, without roads, the time occupied in marching alone is considerable, 85 days were this field season apent in travelling. The routes from otation to atation are circuitous, the tortuous course of the hill etreame being generally adopted to eave time and expense in cutting new and direct roads. Labor is the great drawback in Burma. It cannot be obtained, the inhabitants, as a rule, are unfilling and dieinclined to work. The laboring olaseas all orer Ladia readily prasent themaelves, when work ofers, to add to their comforts, by earning as much as
they are able. The Burmans are too lnzy to do so, and throughout the Province, they themselves engage the Madras and Chittagong coolies to plough thoir lands and reap their fields.
(31.) During this season the positions of the following towns have bean determined, Shonygheen, Sittang, Chaito, Bbiling, Thatone, Moulmein, Amherst and the Great Pagoda in Pegu. I find that the observations taken at Thelakitong in season 1869-70 to Pegu Pagoda were incorrect, some other Pagoda was taken and an erroneous position was therefore assigned to it. The observations takien at Sanwinguntong during season 1869.70 were correct. This season the Pegu Pagoda was observed from five Principal and one Secondary station. Many Pagodas have been fixed and the positions of a great many more will bo determined during the ensuing season when the two remaining etations of the Kathbatong figure and some of the stations of the Malkbo Pentagon are visited. To secure as much secondary work as I possibly could, I engaged a Native Recorder, and was thus able to detach Mr. Clancey.
(32.) There was less aickness this senson than the previous one, the average number of sick was 8 in my camp and 4 in Mr. Beverley's. There were 5 casualties. 'Ihree men were sent home, their recovery in this climate being lopeless, owing to continued debility and emaciation from fever.
(33.) Mr. Henry Beverley, Surveyor lat Grade, has been engaged the whole season on approximate work. He commenced work by selecting the stations of Toungoundong and Thulu. He then proceeded to Sittang and constructed the pillar at Kámbúngún in the plaing, surrounding it with a wooden platform 16 feet aquare and 18 feet high. He then constructed the wooden scaffolding over Chaideo rock, 26 feet high. Every description of work takes time to accomplial in this Province, and the construction of the above pillar and two wooden scafoldings, detained Mr. Beverley from 13th December to 20th January. Had Colonel Brown, the Commissioner of Tenasserim, not interested himself, by personally addressing the Extra Assistant Commissioner (a Burman), Mr. Beverley fould have been delayed much louger than he was.
(35.) On completing the above, he resumed approsimate operations, and selected two simple figures, a Hexagon and a Pentagou, and closed work at Sendong H.S., after having fixed most of the stations of a compound figure in advance. Owing to the setting in of the rains this latter figure could not be completed. Some of the sides of the compound figure are long owing to Mr. Beverley's liaving no choice of ground, the isolated, inaccessible lime-stone hills rugged, jngged and funtastically shaped, in the valleys of the Atteran and Wiang rivers, being hopelessly unsuitable.
(36.) I had directed Mr. Beverley to observe all Pagodus, which were visible at each station that he visited, and to uso his best ondeavours to determine the position of the Pegu Pagoda. He was successful in seeing it from Thulu and Shoay-yougbia Hill Stations. He selected and constructed a station at Amherst which was finally fixed by his observations there and at Toungzun, and my angles at Kalamatong H.S. Mr. Beverley nlso contributed some secoudarics, while carrying on approsimate operations, and many other Pagodns, which he has obserred in advance of the final work, will be fixed during the ensuing senson when I visit the Principal Stations.
(37.) The lime-stone ranges of hills ou the enstern flank of the Series are mostly precipitous and inaccessible and Mr. Beverley had great dificulty in fixing suitable stations. He had to abandon Zway-ga-beng and other bills more favorably situated, because the 24 -inch Theodolite could not be carried up. With all his picking and choosing, he was compelled to adopt two of these difficult hills of limestone formation Mizantong H.S. and Makbo H.S., which with the nid of ladders and ramps, he managed to ascend. As this Party has, during its progress, encountered difficulties of every description, and every variety of ground, these two hills need not cause anxiety.
(38.) Mr. Beverley hns accomplished a very satiefactory season's work. He lost the most favorable time of the year from the 13th December to 20 th January in preparing the pillar and acafolding at Kámbúngún nad Chaideo stations; notwithatanding this loss, he with his usual zeal and energy advanced the approximate triangulation 100 miles of direct distance in a trying and difficult country with commendable checrfulness and alacrity.
(41.) Mr. Clancey has worked well and antiafactorily. Ho takes much interest in his duties, and is assiduous to please. He has learned the Burmese language which will be rery useful to him.

Extract from the Narrative Report-dated 13th September 1875-of W. G. BEVERLEY, ESQ., 0fficiating Assistant Superintendent 2nd Grade, in charge of the Burmah Party.
(2.) The Party was constituted under Departmental Order No. 44 of 6th August 1874, the establishment being trausferred from the late Brahmaputra Series. Its object is to carry chains of mecondary triangles from principal sides of the Enstern Frontier Series, in order to fix all the large towns, prominent and permanent objects, peaks, \&c., in the province of Dritish Burmah, for detail and Geological Surveys, and the light-houses de. along the coust, for the Mrarine Survey.
(3.) A part of the eatablishment and heavy baggage left Calcutta for Rangoon with Mr. Collins on the 1st November; and the remainder with me on the 7th. Mr. Mitchell was transferred from the Eastern Frontier Series, and joined the Party at Rangoon. Work was commenced before the end of the month.
(4.) During the preceding season, Mr. Mitchell had in connection with the Eastern Frontier Series reconnoitred the country, and laid out an approximate triangulation from the principal side Keokpongdong H.S. to Kaveindong H.S. down to Rangoon, so as to fix that town, as well as Pegu. I considered it advisable, on commencing work, to examine Mr. Mitchell's selections and found it necessary to modify his plan to some extent, to save time in clearing rnys and hill tops.
(5.) On my return from examining the country to the north, I took up the triangulation southwards to the coast, selecting stations after a careful reconnoissance of the ground. Most of these stations are fixed on old Pagodas, by which there was a great saving of time as regards ray cutting, and of expense in building stations. The approximate work of selecting stations, and the final work of observation, were carried on together as far as practicable. The triangulation was carried dome to the mouth of the Rangoon river.
(6.) Mr. Collins had been left to clear the rays at the hill station of Ayodong; and as he had now nearly completed his work, I returned to take up the final observations from the statione north of Rangoon, as the atmosphere which hitherto had been pretty clear was gradually getting hazier, I went up as far as Taongnio H.S., but as Yomá H.S. in ndvance had not been cleared nor occupied by the sigarlmen, I was unable to complete my observations there. The angle at Cháglibá H.S., between Ayodong and Taongnio stations, could not be observed, as the signalmen had been compelled to abandon the latter station on 4th March, from the only spring there having ceased to run, and there being no water known to exist within 10 or 12 miles.
(7.) The triangulation from Tangaio and Cháglíbá to the cosst is incomplete; as the very dense haze, which prevailed from the beginning of March, prevented the requisite observations being taken at Ayodong, Cháglíbá, aud Shántejí, as shomu by dotted lines in the chart accompanying. Two attempts were mude after the rains set in to obtain observations, but without success.
(8.) The triangulation along the const towards China Bakir light-house, was resumed in the middle of March; but from the nature of the ground the progress made was slow. Work was closed on the 24 th of April, when the southwest monsoon set in with severe storms, and very heary and continuous rain. ln fact, the country had been gradually getting under water along the large streams, from the rising of the Irrawaddy river since the middle of March, when the snow nt the sources begins melting. The cutters were frequently up to their waists in water, and suffered great inconveniences from the absence of drinkable water under a burning sun.
(9.) Mr. Mitchell at the commencement of the field season, opened the ray Chanakpho H.S. to Insingpaiá Station, and partially cleared the hills of Ayodong and Taongnio, taking some observations at the latter station. He took up the clearing of the ray Chanakpho to Ayodong, whioh was ultimately abandoned : he also took some final observations at Insingpaia.
(10.) As there were no means of reaching Yomá Station directly from Tangnio, but by a circuitous route which would occupy nearly a fortnight, Mr. Mitchell was deputed to clear the aunmits of Kamlútong and Yomé, selected by him the previous year, to build the stations there, and commence final obserrations from the side Kaneindong H. S. to Keokpongdong H. S., closing on the stations of 'leongnio and Chaglibé to be visited by me. This was partly in conformity with the plan laid down by himelf, and which, from my examination of the country, appeared to be feasible. Mr. Mitchell, however, after a second examination of the country, and after visiting 3 or 4 points where he took rough observations, found numerous difficulties in so carrying the triangulation, and was obliged to resort to the side Kámbúngún T.S. to Júngjúngiá H.S. from which he thought he could get over the country more rapidly.
(11.) Mr. Mitchell took observationa from seven stations; but owing to very bad weather and frequeut attecks of illness, he was unable to carry his final obscrvations up to the point where they
would have been connected with the work executed by myself. Ho endeavoured, at risk of health and much inconvenience, to complete his work by remaining out until the middle of June, when field work was impossible from the incessant rain.
(13.) Mr. Collins was employed in clearing the stations of Cháglibf, Engtago and Ayodong, and building masonry pillars on them. The forest at the latter station was extremely dense, and the rays from it to Jusingpaiá and Shantejí were cleared over three broad wooded ranges. Upwards of a month was occupied at Ayodong alone. The delay was chietly due to the difficulty of procuring labor. Burmese coolies could not be obtained after the middle of December, and the immigrants entertained were almost useless, Several of these latter deserted shortly after obtaining an advance of pay; while those from the immigration office contained a large percentage of Brahmins, who systematically abstained from any and every lind of work on the pretence of illness.
(14.) When the rays at Ayodong were all cleared, Mr. Collins took some final observations there, and aleo at Kaiúngále Station with the 8 -inch theodolite, and then proceeded and built a masonry pillar at Shántejí, but could not get observations, on account of the haze which had now become unusually thick. He joined me on the coast at the end of March, and was employed in carrying raye, \&c.
(15.) Mr. Collins has throughout the season shown a great deal of zeal and energy, is a good and careful observer, and is rapidly becoming au efficient surveyor.
(16.) Two Burman interpreters and writers were entertained for this Party. One of these with Mr. Mitchell, died from fever in the field. The other was of very great service to me.
(17.) The men of the Native Establishment have worked well and cheerfully although in a new country and ignorant of the language and customs, and have given antiafaction. They are trained men melected from the Establishment of the late Brahmaputra Party, and sent to Burmah on higher rates of pay, but still much less than the pay given in this Province, and in some instances less than that given to the game class of men in the Eastern Frontier Party. In spite of the inducements of less work and very high wages offered in the Public Works Department, they have remained faithful to their agreements. The elephant keepers alone have been as usual with that class of men a cruse of trouble and annoyance, and anxiety for the health and safety of the auimals in their charge.
(18.) The triangulation has been carried over a variety of ground. The hilly portion is low and denacly wooded, and the difficulties peculiar to this tract bave been fully pointed out by Mr. Rossenrode, and noticed by yourself in your last jear's Report to Goverament. 'Ihese difficulties were to a certain extent greater to our Establishment which was quite new to the Province. The country along the coast is an equally difficult one for triangulation. It is low, and cut up with numerous tidal creeks and rivers. There are few or no pathe through the low thick tamariak and thorn jungle ; and no drinkable water except at the villages which are small and far apart. The work on the coast can only be done by boats and coolies, both to be entertained at Rangoon, as they can rarely be got in the villages, and then only at exorbitant rates. Elephants cannot be used on account of the scarcity of fodder, and small supply of water procurable. The ground too, after inundation at every high tide, is extremely dangerous for laden animals.
(19.) The out-turn of work for the past year, would hare been more eatisfactory if there had boen no break in the triangulation; and as the members of the Party are now better acquainted with the peculiarities of the country and people, n greater out-turn may be confidently expected in the onauing field season, under favorable circumstances. 'I'he chief causes of delay in Burmah are the difficulty of procuring labor, and in moving with rapidity from one place to another; but the greatest is the haze arising from the burning of jungle and rice straw. On the cosst, there is less haze to contend with, as there is very little jungle that can be burnt for cleariugs. Very little rain falls during the dry season : between the 7 th of November and 23 rd of April, there were only two elight showers.
(20.) There was much sickness in the camps at the commencement of the season; and both Measrs. Mitchell and Collins, and uearly every man of the Establishment, have suffered from malarious fever. In fact, there was always a large percentage of aick throughout. Three deaths occurred.

Extract from the Narrative Report-dated 16th August 1875-of Captain M. W. ROGERS, R.E., 0fficiating Deputy Superintendent 3rd Grade, in charge Jodhpur Series.

(2.) I returned from furlough on the 28th October, and on the 20 th November relieved Lieutenant Hill, 1.E., of the charge of the Party which he had held during my absence.
(3.) All arrangements for the field senson had been made by Lieutenant Hill and he had sent off the assistants before my arrival. I had engaged the carriers for the Groat Theodolite whilat at Ahmedabad and there was therefore no delay in taking the ficld which was done on the 23 rd November.
(4.) I marched vid Jodhpur to Nok H.S. in Jaisalmir, where observations were commenced on the 17 th December; from thence the observations were carried on continuously through the heart of the great Jaisalmir and Bikanir desert as far as Marot in Bahátralpur and were closed at Bhulan H.S. on the 21st of March.
(5.) The following is a general statement of the season's work. Observations were taken at 25 principal stations forming a pentagon, two hexagona, and one double polygon, fixing 23 new pripcipal stations, embracing an ares of 2472 equare miles, and extending the series 104 miles along the meridian. An azimuth was observed at Mugrálí H.S. to two circumpolar stars. The Approximate Series was extended 64 miles to its junction with the Sutlej Series. The positions and heighte of Bikanir and Pugal were fixed by minor triangulation, the area of which, exterior to the series, was 681 square miles.
(6.) Some explanation is needed as to the dearth of secondary and intersected points; this is due to the nature of the country, in which there are neither natural nor artificial objects of interest.

The total intersected points on the priacipal series were 8 , of these 7 were intersected from the four last stations of the series, leaving a trict of about 90 miles by 30 , in which there was only one point which could be intersected.
(7.) Mr. Price was in charge of the Approximate Series and extended it through the desert to Mr, Prioe. the Sutlej Series. Bearing in mind the grent difficulties of the country, I consider the amount of worls he has done and the well proportioned good figures which he has been able to obtain, reflect grent credit on his zeal, intelligence and hard work.
(8.) Mr. Torrens laid out and observed a minor series to Bilnnir by which that city was fised in height; he closed on to a side of the series emanating from the Gurbágarh, with very sntiffactory ngreement in results. He alno
Mr. Torrens. fired the position of Pugal by a short series and the levenue Survey trijunction at the junction of the Bikanir, Jnisalmir and Baháralpur boundaries. He algo closed 17 stations in Bikanir and Jaisalmir.

He observed with a 10 -inch theodolite and bis avernge triangular error was 1".7, He has worked well and cheerfully and I am much pleased with the quality and quantity of his work.
(9.) Mr. Prunty joined the party from Head Quarters during last recess, and accompanied me Mr. Prunty. during this seamon as observatory recorder. He is painstaking, willing and neat, and has now acquired the accuracy which was all he needed to make him a very good recorder. He has learnt the use of the theodolite and perfected himself in departmental routine and I am very well antisfied with him.
(13.) The country through which the series passed this senson, is a sandy desert; the sand hills in Jaiealmir are from 50 to 150 feet in height nad are distributed in such a confused manner over the country as to make it a work of great dificulty to select stations or to obtnin any but very short sides. Towards the north, in Baháwnlpur, they diminish in height and become merely mounds of drifting mand, interapersed with open spaces of bard clay which are perfectly level like the beds of immense dry teuks.
(13.) The sand hills of Jaisalmir and Bikanir are covered with high coarse grass, which grows in large tufte, and with shrubs, of which the most common and largest is the Phog, a leafless shrub, from 5 to 8 feet in height with green twigs and pleasant smelling flower.
(14.) In the Jaisalmir desert there is a good deal of cultivation mostly "bajri". Most of the numerous amall valleys formed by the sand hills are ploughed and sown, although miles from any village, and I believe that the grain produced is very good.
(15.) The villages are few and far apart; attached to each are numerous "dhánis", that is two or three huts erected in the desert, wherover there is either a well of brackigh pater or a amall excavation
in the hard soil (which crops out at intervals) in which water oollects during the rains. These 'dhanis' are inhabited during the rains and cold weather, when the desert is comparatively populous, but are deserted in the hot weather, when the inbabitants return to their villages.
(16.) In the portion of Bikanir, through which the series passed, there is hardly any cultivation. The occupation of the inhabitants is almost entirely pastoral, and they have large herds of cattle, aheep, goats and camels. From Pugal in Lat. 281 ${ }^{\circ}$ to the valley of the Sutlej, with the exception of the villages lying on what was the bed of the old Hurkara river-about 40 miles south of the Sutlejthere are no villages and only a few wells of brackish water; this tract is the most desolate I have yet met with, and the inhabitante desert it in the hot weather, taking their camels into Sindh; this custom deprived me of my aupply of water camels and obliged me to return earlier than I otherwise should have done.
(17.) In the cold weather, up to the end of December, this portion of the country is alive with flocks and herds which get water from innumerable "tobas" or small tanks excavated in the hard clay, which are as I have already mentioned abundant in Baháwalpur and N.W. Bikanir, and I apprehend no difficulty whatever in taking the series in November through the portion remaining from which I hed to retreat this season.
(18.) All the villages have large numbers of camels which roam in the desert and return every few days to the wells to drink, when such as are wanted are caught.
(J9.) Nearly all the country I worked through belonged to three influential Thákurs, Bikampur and Birsilpur in Jaisalmir and the Rao of Pugal in Bikanir, which last belongs to one of the oldest Bhatti Rájput families and is reported to have held Pugal for more than 1,000 years.

The villages in which they live are larger, but quite as wretched in appearance as any I met with, the only distinction being that the Thákurs live in a aort of a half house, half fort built of mud and atones.
(20.) The cold was very great at times, the minimum thermometer twice registered 16°; this was very trying to the men who however enjojed good health as a rule. My experience of the desert is that it is very healthy for people who are well fed and have good water to drink.
(21.) The oity of Bikanir to which a minor series was taken this season to fix its beight, is a Bikanir. fine city built on a slightly elevated spot in the desert where the ground is hard and stony and intersected by ravines. It has a wall $3 \frac{1}{2}$ miles in circuit, wholly built of atone and in good repair, it has 8 gates and three anlly-ports; the wall is from 15 to 30 feet high and it has a ditch on three sides about 15 feet deep. There are many highly carved houses in the city and two imposing looking Jain temples. Water is plentiful from many very fine wells. The chief productions are sugar-candy and blankets, both of which are of a very superior kind. The population is about 35,000 .
(22.) The fort of Bikanir which contains the Maharajah's palace is about 300 yards N.E. of the city. The palace rises above the battlements and gives it an imposing appearance : it is 1,100 yards in circumference and has two gates, numerous bastions and a ditch all round.
(23.) The Goveraments of Marwar, Jaisalmir, Bikanir and Baháwalpur sent officiala and men to accompany the camps, in their respective States, and rendered every assistance in their power, and very greatly was their assistance needed, for without it the work could not have been carried on for a day as the water for the camps, bad to be brought on an average, 10 to 20 miles on camels.

My best thanks are due to the Political Agenta Colonel Minchin, Major Walter and Captain Burton.

Extract from the Narrative Report-dated 8th September 1875-of Captain A. PULLAN, S.C., 0fficiating Deputy Superintendent 3rd Grade, in charge Kattywar Survey Party.

Personnsel.

Captain A. Pullan, B. C.,

Sureeyors and datt. Surveyors.

Mr. J. Peston.
" F. Bell.
" N. C. Gryane.
n E. Wyatt.
" W. A. Fielding.
" W. Oldham.
\Rightarrow G. T. Hall.
${ }^{11}$ H. Cortery.

John MeGill, Eveq., Aast. Supdt.

Head Sub-Surveyor.
Mr. Viagi Ragunath.

Sub-Surveyors.

Govindji Mahalay. Narsu Dinkar. Krighne Govind. Shridhar Succaram. Viehnu Moreshwar. Bholaji Bhosekar. Nilkant Vital. Keshu Vital. Tukaram Chowdry. Ganeah Rámchandra. Vislnu Bulmant.

An area of 1877 squere miles inclusive of overlaps, or 1749 square miles within graticule, was topographically surveyed, consisting of parts of Pránta Hállár and Machhu Kánthá in Katty war and a portion of the southern senboard of Cutch, which was surveyed in order to render the Sheets of Kattywar more complete and to delineate more clearly the head of the Gulf of Cutch. 2200 square miles were trigonometrically surveyed, 200 for the survey of the Cutch coast during the same season, and 2000 in advance preparatory to ensuing topographical operations, and 1117 linear miles of traverse were carried over the area of country topographically surveyed, derarcating the boundaries of States and checking the details of the Plane Table Survey.

It must be borne in mind that the out-turn of work for the two preceding seasons was exceptionally large owing to the wide aree of llat ' Rann' it included, and such an out-turn can bardly be expected in future. I may here state that the agreement between our survey of the bead of the Gulf and the coset line given by the Marine Survey of Lieutenant Taylor, I. N., is decidedly satisfactory, taking into consideration the difference of scale and mode of delineating ground.

At Hajkot, hearing from Mr. Bell, who was triangulating the seaboard of Cutch, that the nature of the ground on Sathsaida Det rendered a stone or masonry pillar unadvisable, I devised a pillar composed of piles of hard teak seven feet long, four feet below the surface and three above, arranged in a circular form, the mark-stone being imbedded in the mud beaten hard all round with amall pebbles and straw to bind it, and the cylinder being then filled up with shingle from the beach mired with mud. This pillar is calculated to stand the wash of the monsoon waters better tban a masonry pillar, which would offer unyielding resistance and tilt over from its own weight, whereas in the case of the pillars now erected the force of the water is dissipated, and I think they will all be found next aeason, in statu quo.

On arrival at Jámnagar or Nawanagar, the capital of the territories of H. H. the Jám, I fonnd that the border of the Gulf, studded as it is with numerous small islnads, intersected by tidal creeks, offered a very difficult piece of work for the Plane Tabler, not only on account of the heavy mud and quicksand, but aleo from the fact that the work had to be done by boat principally, and the aurveyor would have to study carefully the state of the tide nad the direction of the wind. This work I took up myself and completed all the northern and difficult portion of the board by the time that it became necessary to cross over to Cutch and examine the Plane T'able work on that const and also about Hanstal Creek. I therefore started on the 26th February for Hanstal vid Juria.

On arriving at Hanstal, I found Mr. Hall getting on very well and surveging the swampa with correctness and facility. I passed on, after examining Mr. Hall's Plane Table, to the opposite conat of Cutch and spent four dnys in a careful examinntion of Govindji Mahalay's Plane Table which I found correct and neatly executed. I then returned to Juria and marched along the coast to Balacheri in order to judge for myself of tho general character of the const line and awamps; the journey was n fatiguing and dangerous one and I wus very nearly swamped in a quicksand from which 1 was with difficulty extricated by my khlassies.

1 marched from Molila on the 6th A pril en route for Gogo. The heat was at this time intense, far
greater than I had hitherto experienced in Kattymar, and the hot scason threntened to be exceptionally nevere, I therefore reluctantly gare up the plan of completing Sheet 45 which would have kept the Plane Table parties out until nenr the end of May, and sent ordors to the surveyors and sub-surveyors to the effect that when they had completed the boards they were working they were to march and joln me at Goge and from that port make arrangemente for return to reccess quarters.

After receiving all the Plane Tables and comparing their borders before taking them to Poona, I atarted from Gogo on the 12th May and opened office at Poona on the 17th May 1875.

Mr. McGill left Wadhwán on the 21 st November 1874 to take up and complete the triangulation J. McGill, Esq. Asst. Supdt. of Sheet 10 n of Kattywar which had been left unfiniehed by Mr. Wyatt. After completing this work Mr. McGill marched vid Malia and the borders of the Tinnn and examined the southern Plane Tables of Shect 31. Mr. MeGill proceeded thence via Rajkot to Gondal where he commenced the triangulation of Sheets 36 and 37 -these Sheets were completed on the 6th April and Mr. McGill marched to Gogo at my request and thence proceeded to Poone.

Mr. McGill worked with the same zeal and ability which has charucterized bim for many years. His interesting memorandum on Sheet 10 a is appended to my report.

Mr. Bell left recess quarters in advance of the rest of the party as I required him to furnish
Mr. F. Bell, Surveyor Grd Grade. some few extra points on the seabontd of Cutch. Proceeding by boat to the port of Maudir, Mr. Bell commenced work on the 15 th November at Charakla H. S., and worked very hard and well; having completed his triangulation he joined my camp on the 21st December and we conjointly computed and projected the points on the Plane Tables and made them over to the Plane T'able Surveyors. Mr. Bell then proceeded to take up the triangulation of Sheet 38 which he completed by the end of Maroh. His out-turn of work was 800 equare miles, and I have every reason to be satisied with the number and position of the intersected points.

Mr. Gwynne, after completing Fair Sheets 33-35 of Kattywn; took up his first Plane Table on the 15th January 1875. Mr. Gwynne worked throughout the season with the willingness nad energy which distinguish him, turning out 125 square miles of very difficult aud hilly country in admirable
Mr. N. C. Grymne, Surveyor 4th Grade. atyle besides instructing Mr. H. Corkery, Assistant Surveyor and Sub-Survegor Vishnu Bulwant. Mr. Gwynne's steady application in the drawing office during recess is worthy of particular notice.

Mr. Fielding started from Wadhwán on the 24 th November for Sheet 31. He was accompanied by Messrs. W. Oldhara and H. Corkery, Assistant Surveyora, Sub-Sur-

Mr. W. A. Fielding, Agst. Surveyor 2nd Grade. reyors Nilkant Vital and Ganesh Kámchandra and Traverse Surveyor Tukaram Chowdry. The whole of the Plane Table parties and Traverse party I placed under the orders and general superintendence of Mr. Fielding of whose intelligence and carefulness I had formed a high opinion and I was well satieficd with the result. Mr. Fielding having completed Sheet 31 marched southwards and took up R. Plnae Table, S.IV. Section of sheet 43. Mr. Fielding's out-turn of work was 154 square miles, very creditalle when it is taken iuto consideration that in Sheet 31 he had to superintend the work of 2 European and 3 Native Aesistante besides doing nome Plane 'lable surveying himself.

Mr. Oldham worked well throughout the season, first under Mr. Fielding's superintendenco in

Sheet 31 and afterwards on Sheets 43 and $4 \check{0}$ under my own eye. I found Mr. Oidham's work very carcfully done on every occasion that 1 examined it. He recpuires further practice in neat drawing and

[^4] printing, and when these are nequired satiafnctorily, he will be n valuable Plune Table Surveyor. His out-turn of work 200 equare miles for this, his first season, is most creditable to him.

Mr. Hall worked very well throughout the season both on tho borders of the Gulf of Cutch and also in hilly ground in Sheet 44. His out-turn of work was 180 square miles, and I have cvery reason to be satisfied with its quality.
Mr. Corkery was employed throughout the senson in topographical work; his out-turn was 144 aquare miles, and both Plane Tables in execution and delineation of billy country are very creditablo to a young hand and ahow a marked improvement.

Mr. Vibaji Rngunath was employed during the major part of the season in projecting Plane Mr. Viaji Ragunath, Head Sub-Sur. Tables, computing Lats., Longs. of intersected pointe, and in general veyor. miscellaneous worl; at the beginning of April, 1 seut him to run a Check Traverse across the Cutch portion of Sheet 31. This work he satisfactorily completed.

Govindji Nabalay executed the Plane Table survey of 171 equare miles of country in his ueual careful and artistio style. He has also been very useful as a draughtsman during the recess season. Narsu Dinkar was employed in running boundary traverses and check lines during the whole season. He executed in a satisfactory manuer 323 linear miles of traverse, and is a useful and hardworking assistant. Krishna Govind was employed during the season as recorder to Mr. Bell. Shridhar Succaram esecuted 167 square miles of Plane Table survey slowly but accurately.

Vishnu Moreshwar worked very ateadily throughout the field season. His out-turn was 196 square miles, and there was some improvement this season in hie delineation of hilly ground. Bholaji Bhosekar was employed throughout the season in boundary traveraing and running oheck lines; he completed 273 linear miles of traverse. In consequence of information received from you respecting the amount to be expended on the Native Establishment of this party, I was obliged to reduce two parties, one Plane Table and one Traverse party; Bholnji Bhosekar being the least useful of the Traverse Surveyors was therefore discharged. Nilsant Vital executed 164 square miles of topography with accuracy and some improvement in his style of drawing. Keehu Vital executed 146 square miles of topography; there is much room for improvement in his style of sketching ground. He is a good computer. Ganesh Rámchandra executed 170 square miles of topography in a very creditable way for so young a hand, Vishnu Bulwant is very useful in the drawing office and promises in time to be a really good draughtsman.

The principal towns contained in the country now under consideration are; 1st, Jamnagar or Principal Towne, to. Nawánagar, the capital of the territories of the Jám of Nawanagar which district comprises, roughly apeaking, with the exception of a few amall detached holdinge, Sheets 42, 43, 44, 45 and the eastern halves of 52 and 53 . The town which is on the banks of the little river Nágmati is clean and well built with good streets. The population according to the last census amounts to $\mathbf{3 4 , 7 4 4}$ souls. The Jám, a Jhareja Rájput, is gentlemanly and pleasant and from either liking or policy affects the society of Europeans, treating all who visit his territories with much courtesy and hospitality.

The other towns of note in the Jam's territories are Hariana, Dhunwao and Balamba. The Iast named town is supplied with good water by means of a canal four miles long which carries the sweet waters of the aji up to the town; tradition has it that a rich Brahmin of Balamba was enamoured of the daughter of a Brahmin of Latipur; but as Balamba was notorious for its bad brackish water, the girl's father refused his consent until his daughter was sure of good water to drink in her new home, The suitor thereupon set to work and had the canal cut which now exists thereby winning his bride. A dam is now in coure of construction near the village of Madhapur on the Aji which will, when completed, render the canal always full of aweet fresh water.

The town of Malia, on the banks of the Machhu was 00 yeara ago a very strong place; it ia the only place of importance in Sheet 81 : the inbabitante are principally "Miani" Mahomednas, but the $\mathbf{H}_{\mathrm{ijja}}$ ie a Jbareja Rajput of the Cutch family.

Near Jámnagar is a little pleasure house and temple called Rozi Mata, a favorite summer resort of the Jám's, situated on a amall island or rather isthmus which juts out into the lagoons and swamps of the Gulf; the fresh breezes from the sea render Rozi a pleasant place of sojouin during the hot months ; the island is covered with long grass and tangled thicket giving cover to herds of "Nylghai" or "Hoz" which ronm at will unmolested, the ieland as its name implies being their favorite haunt. Near the small village of Bnlacheri there is a bungalow on the shore of the Gulf built by the Jím and occupied during the hot months by the political officers; at a a ort distance from the bungalow is the village of Sachana, the inhabitants of which drive a thriving trade in fish of various kinds, and send a regular supply to the British Station of Ríjkot.

The Maohbu river flowing into the Rann of Cutch at Malia and losing itself in the aalt and and

River.

 mud of the Gulf, is the principal drainage line in the country survered this seeson. The others are the Nagmati whioh rises in the hilly country 30 miles south of Jumnagar, the Aji the head of which only enters these sheets where it debouchea 3 milea north of Hanstal tidal atation into the Hanstal Creek, the Nani and Moti Phuljar, the Und end the Manwer.Sheet 31 calls for no further particular description as what I adid in my Narrative Report for season 1873.74 of Sheet 32 will apply equally to the country in Sheet 31. Sheets 42 and 43 are flat and well cultivated up to the very edge General appearance of the country. of tho mangrove swamps which are a leading fenture of the country and which spread along the Gulf in a broad belt from Hanstal and even higher than that, southward over all the coast gurveyed last eeason, near the town of Jampagar all the islands and spits of thick rich mud are covered with tangled mangrove jungle in some places rising to an altitude of 40 feet but generally averaging from 8 to 10 feet in height. At high tide a little fleet of boats puts out from Beri Bunder carrying the wood cutters to their work in the lagoons, the white sails gleam on all sides among the masses of rich green foliage and the labourers cut and stack mangrove till a returning tide bears them homeward; the stock of firewood thus obtained is a godsend to Jámnagar as the supply of wood round the city is scanty, a large quantity is also laid in by the Bombay bound craft that put in at the little port of Beri,

The country in Sheet 44 is undulating, orossed here and there by low ridges-a stony and sterile dand poorly cultivated; there are few villages of any size in Sheet 44 except on its eastern border where the country is somewhat less stony and the soil richer and better cultivated.

Throughout the low ranges which cross Sheets 43 and 44 are numerous stone quarries, where a Quarties. coarse white sandstone is excavated; this stone though porous and friable when first brought to the surface, bardens greatly by exposure to rain and sun and becomes a useful building stone.

To meet the wishes of the Political Agent, 1 propose next senson to triangulate Sheets 46, 47 and 48 in advance, and to survey topographically Sheets 36,37 and 38 and the portion of Sheet 45 which still remains unfinished-the small portion of coast near Diu of which Sheet 41 consists, I shall also, I think, be able to complete as the triangulation has been doue and nothing remains but the boundary traverses and topographical detail Survey.
tabular statement of 0dt-TURN of work in rattywar during the field season 1874.75.

GREAT TRIGONOMETRICAL SURVEY OF INDIA. INDEX CHART OF THE KATTYWAR TOPOGRAPHICAL SURVEY.

Extract from the Narrative Report-dated 15th October 1875-of Major C. T. HAIG, R.E., Deputy Superintendent 2nd Grade, in charge of the Guzerat Survey Party.

Pbibonnel.

Major C. T. Haig, R.E.
Lieutenant J. E. Gibbs, R.E.
Mr. J. Peyton.
(1) A. D'Souza.
" A. D. L. Christie.
" С. H. Mc AFee .
" \quad E. J. Connor.
"I J. Hickie.
" ${ }^{\prime \prime}$ G. D. Cusson.
$"$ " Hall.
" S. Norman.
" C. Norman.
Native Surbeyors.
Gopal Viehnu.
Luximon Gorpuray.
Ganesh Narayen.
Ganeeh Bapuji 1st.

Rapii Narnyen.
Mukand Dinkar.
Ganesh Bapuji 2nd.
Bhow Govind.
Govind Gopal.
Bulwant Rajaram.
Monaji 4 boo.
Revenue Survey.
Mr. T. A. LeMcemrier.
Native Surveyors.
Keghowram Ratishanter.
Jugal Mansukram.
Dowlat lalbhai.
Gopal Ganesh.
Kuber Purbludase.
Parbhu Kisor.
Trimbaklal Govardhan.
(3.) During the season an area of 1375 equare miles was topographed: of this 983 square miles was on the scale of 4 inches to a mile and 392 square miles on the 2 -inch ecale. In the Dang Foreste an area of about 550 square miles was triangulated, but this will have to be supplemented with further triangulation and traversing to furnish a sufficiency of data points for the final Survey. A small area in sheet 79, which remained incomplete at the close of the previous season, was completed with data points, by tra-
veraing; and an area of about 300 square miles of British territory previously triangulated was prepared for Survey on the 4 -inch scale, by effecting the necessary connections between the fiscal detaila of the Revenue Survey and our triangulation stations by means of traversing.
(4.) The area topographically surveyed comprises the whole of sheets 81 and 82 (which completes the topography of Degree Sheet III), and the completion of sheet 14 of which one quarter was surveyed in the previous season; it thus fills up two gaps which last year presented on unsightly eppearance on the Index map.
(5.) Sheets 81 and 82 include portion of the Dholka, Viramgám, and Dhandhuka talukas of the Ahmedabad Collectorate and portions of the Limri, Lakhtar, Wadhwán and Cambay states which have now been completely surveyed and sheet 14 includes portion of the Ankleswar taluke of the Broach Collectorate and of the Olpad* taluka of the Surat Collectorate.
(6.) The country in sheets 81 and 82 is very flat and the north-east portion of 81 and southwest portion of 82 are very woody. These sheets include the mouth and about 33 miles of the course of the Sábarmati river and about the same length of the Bhádhar, Bhogáwo and Kodh rivers, and also the water connection during the monsoon between the Nal and the Gulf of Cambay which I mentioned in para. 16 of my last year's report as probably existing. It is now established that during the monsoon the Peninsula of Kattywar becomes an island. Sheet 81 also includes a portion of the Nal lake, the greater portion of which is included in sheet 80 , and was mentioned in my last year's report. When I wrote that report I thought the portion left in sheet 81 was so small that I spoke of shect 80 containing the whole lake, but it appenrs that the extents of the lake in November varies very considembly from its extent in March. Many aquare miles which are dry in March and become the haunts of wild boar and wolves, are in November several feet under water. I would remark generally that the drainage of Guzerat is, from tho flatness of the country, very capricious; some of the rivers lose themeelves in marsh or in sand, resolving themselves into strenms again further on, in their passage to the sea; others change their course in a perplexing way, and none of them bave a sufficiently rapid fall to carry off at once any extraordinary rain fall, and so every year the towns on their banks and the bridges are in danger. The Sábarmati, which has lately overflowed its banks and done auch darnage to the city of Ahmedabad and to many villages on its banks-for the second time within the last few yearsia also remarkable for the capricious way in which it alters its course. I have the Revenue Survey map of a village (Rinjha) dated 1856 on which an alteration in the fiscal details was made in 1867 owing to a change in the course of the Sábarmati, the left lank shifting $\frac{9}{8}$ and the right $\frac{5}{8}$ of a mile, the new left bank being $\frac{3}{16}$ of a mile to the right of the old right bank, and our Survey this year shews a still further divorgence from the old course. To give nother inatance, it will be found in the correspondence of the Bombay Party that in 1855 a stage erected at a place called Sikutar Mátha for taking tidal observations, was washed clean away by the force of the current, the site of that stage is now half a mile inland and is only Dooded ut spring tides.
(7.) Sheets 81 and 82 aro crossed by the Ahmedabnd und Gogo road, hut it soarcely deserves mention as in nearly the whole of its extent across these shects it is out of repair, and in some places

[^5]totally obliterated. Dhandhuke the ohief town of one of the talukas of the Ahmedabad Collectorate is on this road and is about halfway between Albmedabad and Gogo. It is in sheet 82. Dholka another taluke toma and next to Ahrnedabad the most important in the Collectorate, is in sheet 81 . On account of the importance of Dholka I had all the principnl thoroughfares traversed with a prismatic compass and chain so that the town could if necessary be mapped on a larger scnle than that of 4 iuches to a mile; but on this scale it is a most imposing feature in the map, being nearly 6 inches from north to south and 3 inches from east to west. The Thikur's towns of Koth and Gangad are also in this sheet, and Dholera (well known in connection with cotton) is in sheet 82 . Sheet 81 oontains a large aren of Talukdari land interspersed with the Khalsn (I explained the menaing of these terms in para. 20 of my last year's report) but in sheet 82 the two classes of tenure are more separate, and I was therefore enabled to survey an area of $\mathbf{3 9 2}$ square miles of Talukdari land in that sheet on the 2 -iuch senle.
(8.) The country in sheet 14 is flat, and fairly wooded with babool and palin trees, though along the const there is a considerable expanee of aand and mud which, on account of the number of intersecting creeks sad nalas, required as much labour in surveying as cultivated land and even more, because of the difficulty of moving over the ground. The Kim and Sena rivers cross Sheet 14 from enst to west. 'I hey are neither of much importance, not being navigable for large craft, but the Kin is the Jarger of the two ; both have considerable estuaries, increasing the expanse of mud. The villages in this sheot ary much more closely packed than in sheets 81 and 82 : in the portion surveged this senson these are none of any great importance though all are fairly populous. Perhaps Elao in the Anklesar taluka and Bagwa and Kursad in the Olpád taluka are the most ao.
(9.) Learing Poona on the 11 th November we commenced work in sheot 81 on the 21 st. Haring a sufficiency of ground triangulated in advance for two years, 1 gave Plane Tables to both Mr. Christie and Mr. Connor who had previously always worked with a theodolito. The two Messrs. Norman and three Native Surveyors having but recently joined the Department in September and October, had nleo to learn the use of the Plane Table. I could not commence the instruction of all these pupils at once, and therefore l emploged those who had to wait, in my Office, where there was always plenty of miscellaneous work to be done in connection with the mapping.
(10.) One new feature in the administration of my Party was the formation of a permanent Drawing Offico. I found this absolutelf necessary, because my mapping power had been most severely orertared by the great amount of mapping thrown upon it by the adoption of the 4 -inch soale and I therefore kept Mr. Peyton and six Native Surveyors at my Head Quarter Camp and I supplemented this force at the beginning of the senson by those hands who were waiting to be taught Plane 'Tabling. The Revenue Survey Surveyors were enoployed solely in plotting the traverses on the Plane Table Sections, ne they came in, as checks to test their accuracy, and in transferring on to them the fiscal details from Revenue Survey village maps.
(11) On leaving Ahmedabad 1 apportioned off the worls to the different Surveyorg, and took my Head Quarter Camp to a central position in their midst from which I could run out and see them each at work: I was disappointed at the rate at which the Survey of sheet 81 progressed, some of the talukdari villages interlaced with the Khalsa gave a great deal of trouble from the fiscal demarcations being obliternted, and from the patches of cultivation along the margins of the marahy connection between the Nal and the Bhadbner river not conforning to the field partition shewn on the village maps. All these patches were surveyed, but at the cost of a great deal of time. On the completion of aheets 81 and 82 we moved into sheet 14 , which was completed by 15 th May, and 1 myself opened 0ffice in Poona on 20th A pril.
(12.) During the early portion of the seneon, that is till the end of January, Leutenant Gibbs Lieutenant Gibbs, R.E. was engaged in Plane Tabling, aud he completed two Plane Tables in sheet 81 on the 4 -inch scale, comprising 36 equare miles. After this I sent him to examine the Plane Table containing the town of Dholka and then to continue the triangulation of the Dangs, which he commenced in the previous season,
(16.) He succeeded in fixing a great number of pointe, but found it impossible to fix any down in the raviner, on account of their being so tortuous and precipitous; it will therefore be necessary to supplement his operations with traverses running along the ravines, in order to give data points to the Plane Tablers who will be obliged to work either on the tops of the hille, or the bottoms of the valleys, and sketch in the precipices, and when in a ravine they would never be able to see the stations on the heights.
(17.) Lientenant Gibbs had a very diffcult task, as may casily be imagined from the fact that the whole of the country in the Dangs is mountainous and wooded and intersected with precipitous, tortuous rarines, and that his atations rary in height capriciously betireen 1500 and 5000 feet.
(18.) I kept Mr. Peyton during the whole field season at my Head Quarter Camp as the head Mr. Peyton. of the Drawing Office, the strength and duties of which I bave mentioned in para. 10.
(19,) Mr. D'Souza aupervised all the Nativo Surveyors' Plane Tabling on the 4 -inch acale, and instructed as well as supervieed Messrs. Christie, S. Norman and C. Norman (partly instructed also by Mr. McA Fee) and Gopal Vishnu, Mr. D'Souza. Govind Gopal, and Bulwant Rajaram, so that he was actively employed the whole season, as he altogether examined 41 Plaue Tubles on the 4 -inch scale, and 1 Plane Table on the 2 -inoh scale, comprising an area of 736 square miles.
(20.) Mr. Christle was employed the whole season in Plane Tabling on the 4-inch scale, and cons Mr. Christie. sidering that it was hls first season at that work, his out-turn is very creditable, both as to quantity and quallity. Mr. Christie is also very observant of the country he surveys, and has given me a report describing fully each Plane Table that he completed.
(21.) Mr. McaFee joined me on the 31st December and I kept him at the Head Quarter Offee till the 5 th February, when I gave him a Plane Table in sheet 81 on the 4 inch scale, and sent Mr. C. Norman with him for instruction. After starting Mr. C. Norman be was employed for the remaiuder of the season on the topography on the 2 -inch scale in aheet 82, and bad working under him Ganesh Bapuji lst and Maoji Narayon; he is a very careful aud accurate worker.
(22.) Mr. Connor, though he had learnt how to use a Plane Table before in the Kattywar Party, Mr. Connor. had never learnt how to utilize the Revenue Survey materiale, Mr. D'Souza therefore gave hima helping hand at first, and then he aoon went on with his Plane Table indepeudently, but owing to his eyes failing him, not being strong enough to stand the continual glare, I had to find other work for him at my Head Quarters, in projecting the Plane Tables and other miscollaneous duties.
(23.) Mr. Hickie was employed the whole season through in Plane Tabling, first in sheet 81 where he completed 3 Plane Tables on the 4 -inch acale, then a Plane Table in sheet 82 on the 2 -inch scale, and then 2 Plano Tables in Mr. Hickie. sheet 14 on the 4 -inch scale. He is a careful and accurate worker.
(24.) Mr. Cusson was also employed the whole season in Plane Tabling, first in sheet 81 where

Mr. Cubson.

 he completed 3 Plane Trbles, one of which included the large town of Dholka, which he surveyed very acourately and mapped very neatly. He then completed a Plane Table in sheet 82 on the 2 -inch scale, and then 2 Plane Tables in sheet 14 on the 4 -inch soale. ILe is a very neat draftaman.(25.) Mr. Hall after completing one Plane T'able in sheet 81 on the 4 -inch scale was transferred Mr. Hall. to the Kattywar Party.
(2G.) Mr. S. Norman was only appointed to the Department on lat September, so he had every Mr. 8. Normen. thing to learn. He rapidly acquired a knowledge of Plane Tabling, and during the scason completed an out-turn of 94 square miles on the 4 -inch scalo very accurately and nently.
(27.) Mr. C. Norman only juined the Department on the 12 th October, so like his brother had Mr. C. Norman. every thing to learn. His out-turn was only 69 equare miles ot the 4 -inch scale, but he was employed in my Office projecting Plane
Tables and on other miscellaneous work until the 8th February. He too promises well for duties both in the field and in office.
(28). Mr. D'Souza reports well of all the Native Surveyors working under him. Gopal Vishnu who

Native Burveyors.

want Rajaram both promise well.
(29.) The Native Survejors of the Revenue Survey Party were divided between two dutiea.

Revenue Survey.

 ing the rillage boundary trijunctions and vilinge sites of the British territory with the triungulation, while 4 Native Surveyors were employed in my Ofice transferring the fiscal details from the Revenue Survey village maps to our Plane 'I'ables as they came in.(30.) It will perhaps be noticed that in uny last yenr's report I only mentioned the Revenue Survey Party as consisting of 5 Native Surveyors, whereas in this report there are 7. Each menson I have to consider the proportion of Native Surveyors to underlings that I requiro, and the Superintendent of the Guzerat Hepenue Survey supplies me either with more Native Nurveyors and leas funda to
pay for underlings, or vice versa; the total ealaries of both being limited to Rupees 500 a month. During the past aeason I only required very little more ground to be prepared in advance of the topography, but that tho drawing power was insuficient to neet my requirements. I therefore drew on the Superintendeut Revenue Survey for 2 more Native Surveyors for employment in my Office.
(34.) I beg to inform you that, when we take the field at the end of this month, I expect that

Mapping.

with the exception of part of the inlcing in of the fields on 4 sections, the whole of the drawing of the scetions on the 4 -inch sonle will be completed, but there will remain a quantity of printing work on several sections, which will be carried gu by the permanent Drawing Office that I shall take into the feld. The drawing of the sections on the 2 -inch scalo has also been commenced, but will have to be finished in the field. I expect to have all the seotions now in band completed before we return to recess quarters.
(35.) I um happy to inform you that there is a marked improvement in the mapping of this reoess over that of last year. Last year we wurked under grent disadvantages, but we learnt several lessons, which have been turned to account this year, and now the hands are classified into (1) free hand draftsmen, (2) second class draftamen and (3) mechanical draltamen, and the printers are also divided into (1) hand printers, (2) and (3) Ist and 2nd class type printers. To each section, before it is begun, is stitched a printed form called "Section legister" in which all the different stages through whioh the map has to pass are tabulated, and against each there is a space for the signature of the draftaman or examiner, who passes it through the particular stage, so that each map progresses regularly, and passes frum one class of draftsman to anocher, according as the stages are divided among the different classes. This method could not be arrived at at once, and the want of it last jear was the cause of many errors, which have taken up a great deal of time in correcting.
Computationa. (36.) All computations have been completed.

Extracts from Notes on the portion of the Dangs visited by Lieutenant J. E. Gibbs, R.E., in February-May 1875.

(1.) The country in which I have been working this season comprises portions of the Dang Forest, together with some Qaekwar territory, part of the Pimpalner taluka of Khandesh and part of the Báglán taluka of Násik.
(2.) I must preface my remarks with a few words concerning the notes that were published in the General Keport for 1873-74. They were in some cases merely records of the impressions with which I was struck at the time, aud which I was content to leave as such till I should verify or correct them thie year, hoving no idea that they would go farther than the office table. I shall now have occasion to correct some of my atatements of last year.
(3.) The whole of the hills forming the Dangs may be looked upon as the first step of the trap formation leading to the Deccan table land. The second step is at the Gháts bordering the east of the Dangs. The lower step is
Aspect of the country. deeply cutinto, as with a graver, by the water courses of the torrents of the rainy season. At the foot of about 40 miles the water courses have a fall of about 1500 feet. The 'trend' of the lower step, and its valleys are clothed with forest. The upper step is fringed along its western edge by high peaks. The strats are perfectly horizontal and the peaks consist of vertical columns of basalt. Where these are equal in height they give the appearanoe of a tower, but where of unequal height and arranged like the half of a set of organ pipes, they give at a distance the illusion of cilting, which I noted last year, and which I again noticed on leaving the Dangs this year. On tho upper step the aspect is quite different. From one of my atations on the peaks of the fringe, which there ran roughly north and south, to the north-east lay a fat plain dotted with low conical hills, bare of trees, to the enst and south-east were high hills with fint tops, or peakn, but only clothed below with forest. To the west lay the Dangs, a monotonous expanse of forest. Looking down there scarcely appenred to be any hills, the valleys being too steep-sided and winding to show. Generally speaking the aspect of the country is wild and inhospitable, but occasionally picturesque gorges, and dells may be met with, though always of a wild charaoter.
(4.) In the course of my work I visited the hill forts of Rupgnrh, Songarh, and Saler belongHill Foris ing to H. H. tho Gackwar.

Rupgarh Fort was taken from the Bhile by onc of the Gaekwars, but has long since been abandon. ed, and is in ruins. It lies in a very silent position on the frontier, and at one time was useful for kecping the Bhils in check. Last year I made a note of a perennial spring supplying a tank in the fort. Dissatisfied at the time with the information I received that the tank was supplied by a spring, 1 examined the place, and thought over the matter this year. The level this year in March was within an inch or two the same as in May last year. The tank is at the lighest part of the fort, which stands on a mass of rock high ubove any thing olse within miles, so that it could not be a spring of descent. The water is oold, and there is neither motion in it, nor overflow, as would be caused by a spring from a great depth. A syphon could not exist through rocks of so jointed a Irind as trap. 'I'he only explamation there fore that l oan give for the presence of this constant supply is that, as in the case at the ponds made on the South Downs of England, the daily sea breezes laden with vapour reach Rupgarh almost without obstruction, and there, being checked and meeting with the cold surface of the water already there, they are deprived of their vapour, which condenses to collect in the tank.

Songarh Fort is on the hill to the west of the once walled town of Songarh. It was original!y seized from the Bhils, some families of whom still hold Jeghirs in connection with it. It has a garrison of 25 men, and there are 35 guns in it, which are rusty and honey combed. The only portion of the defences at all kept in repair is the entrance at the northern end. From the top of the hill two high walla run down splaying out, and are connected at the bottom by a very high wall in which is a gateway. In the lower part of the enclosed space are the ruins of what must have been a fine palace with several stories, Songarh is the Hend Quarters of the Pargana.

Sáler Fort stands on an immense mass of basaltic rock on the top of the upper step. This masa of rock is very steeply precipitous on the southern side, where it is slightly concnve, the horns of the crescent flanking the ground between. The security of the fort lies in its natural inaccessibility. The ascent is by a zigzag rock-cut staircase up the southern cliff, completely in view from the ridge above, as far as the simple but ingenious syatem of gate-defences that bar access to a narrow ledge along and halfway up the western face. From the northern end of this ledge is another rock-cut staircase leading to the second set of defences that are just below the level of the spring of the 'roof'. The most active of goats could not ascend by any but the regular path. On the top are cattle and goats that have been carried up when young, a good supply of water in tanks at the foot of the roof-slope (which is about 200 feet high), and rock-cut casemates for the garrison.
(5.) I think that the evil reports about the Dangs are exaggerated. Whether this year and the Climate and Health. last have been exceptionally healthy or not I do not know, but judging from them I think that with a little care there need be very little danger of sickness between the end of Februncy and the middle' or end of Mny. I believe that during that period there is little or nothing to fear in the nir. Without doubt the water is unfit to drink, not only because in many places it is mixed with the rank products of rotting vegetation, but that it is still impregnated with the malaria of the cold season. The sovereign cure for this I believe lies in distilling all water for drinking or cooking purposes. Hindús, who drink water in large quantities, and who will not touch distilled water because stills were unknown to their forefathers, sufter considerubly, and 1 had several very serious cascs of remittent fever among the Hindús of my party. The rest all enjoyed very good health.
(6.) Last year the statistics I collected about 14 villnges that I visited in forest tracte, showed Inhabitante. that the percentage of children was 36.55 nod this year the statistices of 26 villages gives as the percentage $37 \cdot 96$. On comparison with the Census Report of the Bombay Presidency, I find that the proportion is a little over that for the whole Presidency taken together, and therefure my conclusion last year that the population here was rapidly decreasing may be erroneous, still I believe I was not very wrong, and think that, considering the few old people one sees, the percentage of childrou is amall.

The hillmen generally are very superstitious and their worship being dictated by fear, stones erected to Wághdeo (the tiger god) nul Nágdeo (the snake god) are very common.

As I worked more in the heart of the Forest this year than last, I naturally ean more Bhile. They are however disappoaring from the country. The Bhíl chiefs are 14 in number, 5 being atyled Rija, and the reat Naik.

I visited a manufnctory of Káth, the Parses Overseer showing me every thing. The process was just the same as I described last year. I was amused, if not shocked, by the nonchalance of primitive innocence with which several young women, habillées peutêtre, mais non vêtues, stood around. Some were absolutely less clad than the men. The dirtiness of the people is rivalled by the dirtiness of the process.

At one village vidi mirabile monstrum in the form of a young woman built by nature to be a left-banded amacon. Her right breast was supplying the wants of her baby, but it is fortunate she had not twing.
(7.) While working in and along the boundary of Gaelwar territory, I was surprised to see the wretched state of the trees, especially teak. One might reckon on the core of any tenk tree over a foot in diameter being rotten,
The Forest. and the trees were all misehnpen. I was agreeably struck by the contrast on working into the Dang states. 'I'he superiority in size, symmetry and henlthy growth of the trees under the Forest Department over those in the uncared for Gnekwar districts, catches even the untrained oye at once, and opeaks volumes in praise of the care and efforts of the Department. The trees are tall, thick and straight, and solid throughout, and the old trees that are felled are replaced by healthy saplings. In some dells the trees were particularly fue with tall straight trunks, not branching till they had attained a great height.
(9.) Last year in my notes the trees \&e., mentioned were put down irreapective of order, I have Botang. therefore repeated their names in the following list of apecies I have identified. The native names are those given me by the hillmen, who seem to bave names for all trees and plants. Besides the following I noticed several that I hope next year to be able to identify.

Capparidee-Capparis pedunculosa, a amall shrub with recurved thorns and umbels of amall white flowers having long gynophors. -2500 feet.

Malvacea-Hibiscus Rosa Sinensis (Jroodi), the shoo flower in Sáler gardens.
Bombar-Malubaricum (Síonvar), red silk cotton tree, desoribed last year.-Dang Valleys, Sterculiacea-Sterculia urens (Khandol) described last year.-Dang Valleys.
Tiliacece-Grewia abutilifulia (Dhamon), a small tree with 3-uerved leaves and cymes of amall yellow flowers, having petals much smaller than sepals; drupes small yellow anid to be edible; wood bard and atrong.- 2000 feet.

Rutacea.-Egle Marmelos (Bil) with 3 -foliolate leaves (emblematio of the Hindú Trinity), and large globose fruit having a woody rind and many aeeds in a aweet aromatic orange pulp, valuable in dysentery. -1500 feet.

Anacardiacere-Mangifera Indica (Am), the common mango, near village sites.
Celastrineca.-Celastrus paniculata (Kärkángun), a scandent shrub with pendulous panicles of ting greenish flowers; the seeds gield lamp-oil.-Dang V alleys.

Rhamnea.-Zizyphus rugosa ('I'uran), a amall tree with recursed prickles; fleshy white fruit with crustnceous stoue, having a mawkish taste, and being much eaten by the inhabitants.-Common even over 3000 feet (See Hooker's Flore (f Indin).

Rhannus Wightii (Ragatrura), a amall shrub with shortly nccuminate fascicled lenves; panicles atarting opposite to one of the lowest lenves of a turl; berries, $\frac{2}{3}$ size of a pea, superior, 4 -seeded, red-orange; calyx persistent-ovidently rare as I only asw one apecimen, and few of the villagers know it name.

Leguminosa-Erythrian Indica (Pangara), a tree armed with black prickles; leaves 3 -foliolate; racemes of bright scarlet flowers in March. Wood used for sword sheaths (Bird-wood).-Dang Valleys.

Erytbrina suberosa (also called Pangara), very eimilar to the above but with cork like bark.-Dang Valleys.

Butea frondosn (Palas Kankara), known to Europeans ne the Dák, a shrub with 2foliolate, leaves leaflets large, used ns plates or drinking cups; tomentose racemes of large silky orangered flowers in February and March; legumes downy, one seeded.-Everywhere.

Pongamin glubra (Kurunj), a tree with 5-7-foliolate leares with large glabroas leaflets; axillary racemes of shortly pedicelled pink and white pnpilionnceous flowers.-Dang Vallega. Dalbergia latifolia (the Sisu of the Bombay Presideucy), the black-wood tree.1500 feet.

Dalbergia ougeinensis (Tanaj), a large tree with 3 -foliolate leaves, leaflets large, reddiah when young; racemes of amall pink fowers; wood tough, strong, and heavy.- U_{p} to 1500 feet.

Cassin fistula (Báwa), a amnll tree with pinnate lenves having 5 pairs of lenflets; pendulous racemes of bright yellow flowers; pods long, cylindrical, divided by apurious traverse plates into onoseeded cellu; seeds hard, ehiny, collected by red beetles.-liverywhere.

T'amarindus Indica (Amli or Chinch), near village sites.
Bauhinis lacemosa (Aapta), a amall tree or ehrub; leaves used when dry for makking ' biria' or native cigurettes; terminal racenes of amall white fowers.-Common everywhere.

Aoacia Catechu (Khair) mentioned last year.-Common everywhere.

Albizzia Lebbek (Siris), a large tree with black bark, and dark heart-wood nomewhat like black-wood ; leaves abruptly bipinnate ; pinnæ 2-6 pairs; leaflets $10-15$ pairs, very oblique; raceme axillary, long peduncled with many close 10 - 15 fowered heads.-Up to 1500 feet.

Cicer Arietiuum (Chana), gram cultivated about Songarh.
Phaseolus Mungo (Urid) cultivated in small patches in the Dange.
Combretacee.-Anogeissus Latifolius (Díora), a tree with white bark and wood, and light green elliptical leaves; it yields a very fine strong white gum.-In valleys and up to 1500 feet.
'Terminalia Chebula (Herdi), leaves large, oblong and downy when young ; petioles short with pair of glands at apex; panicles of purple oval drupes having a bloom; drupes (myrobolans) valuable for their tannin.- 2500 feet.

Terminalia Arjuna (Mota Sádra), a large tree with smooth bark and dark heart-wood.-Up to 1500 feet.

Myrtacear.-Sizygium Jambolanum (Jámhul), a tree with light colored bark and opposite, entire shining leaves; 3 -forked panicles of small white flowers with calyptrate corolla ; good timber and edible fruit.-Near village sites.

Sizygium Salicifolium (Jámbul), a shrub with willow-shaped leaves; lax panicles of amall white flowers.-In beds of rivers.

Careya arborea (Kumbi), a tree with large entire membraneous leaves, uuch eaten by a amall white caterpillar; leares after flowers; flowers with $2-3$ hundred long white stamens; style long, honey at base; fruit the size of a small apple, edible. -2000 feet.

Cucurbitacea.-Cucumis trigonus with oval fruit, yellow striped with green, very bitter; climbing or creeping about shrubs. 2000 feet.

Loranthacea.-Loranthus bicolar (Bhendgol), a very common parasite especially on the Aapta; flowers long, slender, scarlet and green; leaves opposite, entire; disc accrescent round inferior ovary.Every where.

Rubiacea.-Nauclen cordifolia (Hedu), a large tree with roundish downy stipulate leaves, und round heads of flowers.-Valleys.

Gardenia dumetorum (Gál), a small epinous tree with opposite, simple entire lenres having intorpetiolar stipules; flowers sessile, axilhary, solitary, white fading to yelluw; fruit round.Everywhere.

Gardenia lucida? (Tendrum), very similar to the above but with large flowers; flowers full of honey; stigma large, brown and sticky.-Every where.

Composite.-Blumea holoserica, a smnll downy herb with decply serrate leaves, and yellow flowerheads in elongated panicles. So common all over disused clearings, that at first I thought it must bo oultivated.

Oleacee.-Jasminum Sambac (Bhat Mogra), a shrub with fragrant, double white flowers.-In Sáler Gardens.

Sapotaceo.-Bassin Intifolia. (Mahwa), mentioned last year. Jhere nppear to be 2 varieties, the one with red and the other with green leaves.-Both in great numbers above the Ghats near Pimpalner, and also common in the Dangs.

Ebenacea.-Diospyros exsculpta ('lemburai), a small tree with large leaves downy beneath; fruit edible with rather pleasant flavour.- 1500 fect.

Apocynacea.-Carissn Corandes, n spinous shrub with shining coriaceous leaves, and fragrant white flowers; purple berry with sweet acid pulp; flowers in March.-Common every where.

Wrightia tinctoria (Kála Kura), a small tree or shrub with white wood, and lax panicles of fragrant white flowers appenting in A pril ; style very short and anthers low down the tube. Common everywhere.

Holarrbena antidysenterica (Doli Kurli), a shrub very sinilar to the above, but with wider leaves, and puberulous flowers having partially coherent anthers which form a pyranid above the limb of the corolla.-Common everywhere.

Asclopiadacea.-Calotropis Giganten (Madár), a shrub nbounding in milky juice, opposite leaves and interpetiolar umbels of purple flowers.-Common on all clearings.

Bignoniacea.-Bignonin Quadrilocularis (Waras), a very handsome treo when in full bloom with its large bunches of crimped white flowers.-Vallevs and up to 1500 feet.

Cordiacea.-Cordia Myan (Bhoknr), a small tree with simple alternato leaves, panicles of whito fowers, sid edible berries with glutinous pulp.-1500 feet.

Verbenacea.-Tectona Grandis (Sngwan), the teak tree-Vallegs and up to 1500 feet.
Gmelina arborea (Sheoni), with opposite entire leaves, velvetty beneath; infloreacence
a raceme; drupes yellow, superior, calyx persistent ; fruit much eaten by wild nimals. -1500 feet.
Vitex Nirgundi or Bicolor (Nirgrudi), n slurub with opposite 3 or 5 -fuliolate loave and pauicles of small bluish purple lowers,-Common in valleys and above the Gláts.

Euphorbiacea.-Phyllauthus Emblicn (Aoula), a emall tree with axillary clusters of flowers; drupe fleshy, edible.-Valleys.
l'rticacea.-Ficus benghalensis (Waror Bar), the Banyan tree.-Common everywhere.
Ficus religioan (P ipnl), with cordate, narrowly accuminate leaves.-Evergwhere.
Ficus pseudotjioln (Pipri), a tall laudsome tree with long petioled, oblong-ovate, shining leaves.-Common.

Ficus cordifolia (Píer), a tree with leaves somowhat like those of the Pipal, and clusters of small sessile round fruit.-Common.

Ficus glomeratn (Umbar), a crooked tree covered with figs, purple when ripe, and almays full of worns or flies.-Common eapecinlly by streams.

Artocarpacece-Artocarpus integrifolia (Panas), the Jnck tree, with shining dark green coriaceous leaves and huge fruit with shagreen exterior. - Western borders of Dange.

Orchidacece.-I saw several specimens on trees, but none in flowers.
Anaryllidacece.-Crinum parsun (Karwand), stem about 9 inches high, about 3 white flowers in umbel; the bulls wero generally so fixed in the crevices of rocks that they could not be taken out thole; flowers in May.-Common on tops of Dang hills and on the Gháte.

Palmacece.-Borassus flabelliformis (Tári), tnpped for ite saccharite juice, drunk under the name of tari or toddy.-Common in the western Dangs and again at the foot of the upper Gháts.

Phervix Sylvestris (Kajur), the common wild date palm; fruit yellow when ripa.Western Dangs.

Graminea.-Eleusinc coracnna (Nágli or Násni), cultivated for food and export, being given to Banjíras in exchnuge for salt.

Oryan antiva (Chokha), common rice, occasionally raised in amall quantities for food. Holcus spicatus (Bájri), cultivnted for food.
Bambusa vulgaris (Welu), growing to 60 feet high in thick clumps.-Western Dangs.
Bamlusa stricta (Bás), a small straight species of Bamboo with long thin branches.-
Western Daggs.
There is of course a great snmeness in the lithology of the district, the greater part of the rocks varying from llack to grey crystalline basalts, diorites, and the like. On the tops of sercral of the hills of the 'lower step' I met with rocks full of acicular white crystals. I saw very few large crystal masses. There nre no alluvial depoyits, and the rocks of the river beds arc polished and rounded by the attrition of the gritty particles earried down by the monsoon torrents.

INDEX CHART OF THE GUZERAT TOPOGRAPHICAL SURVEY

TABOLAR STATEMENT OF WORK IN GJZERAT, DURING THF FIELD SEASON 1874-75.

Obgibyer'a Navcrs.	Lnstrument used			S Anelrs obsbribd.					2 Axalbs obereryed.				Rescanes.		
				Triangles.	Trisngular өrror.	Error per mile.	No. of Heights.	Discrepnucy in Height.	Trianglea.	Error per mile.	No. of Points.	No. of Heights.			
Lieut. J. E. Gibbe, (Recorder Bulmant Atmarmin.)	Troughton \& Simms' 10-inchi	$\left.\left\lvert\, \begin{array}{l}147^{*} \\ 412+\end{array}\right.\right\}$	27.	35	$\stackrel{4}{8}$	177 in.	24	09§ ft.	138	4-1\|	in.	92	61	*Primary Triangulation. \dagger Sccondary Triengulation. \ddagger Mean diff. of 15 common sides. \\|Mean diff. of 40 cormmon sides. §Mean diff. of 21 common heights.	

Extract from the Narrative Report-dated 15th November 1875-of Captain H. R. THOMLIER. R.E. 0fficiating Deputy Suparintendent 1st Grade, in charge of the Kumaun and Garhwal and the Dehra Dun Survey Parties.

In the spring of 1874 , the Establishment of the Kumaun and Garhwal Party was broken up

Peasomerl.
Captain H. R. Thuillier, R.E. Lieutenent St. G. C. Gore, R. E., Aset. Supdt.

Surbeyors and dest. Sirveyors.

Mr. C. J. Neuville.
J. Lrow.
L. J. Posock.
H. Todd.
T. Kinnoy
" E. P. Wrizon
Natios Surpeyors.
11 Native Surveyors. into two detachments; one was sent under Mr. E. C. Ryall to resume the Survey of the higher ranges in Kumnun and Garhwál, the operations of which will be described herenfler, the other detachment, as per margin, under my own superintendence, was emploged during the field season $1874-75$ in carrying on the Survey of Dehra Dún which was commenced in the previous year.
(2.) The field operations commenced early in October. Lieutenant Gore, was entrusted with the supervision of the village boundary traverses: Messrs. Loow, 'lodd and Kinney, eaoh with two Native Surreynrs, were deputed to take up the topography of the Western Dún commencing at the Jumna. Mr. L. Pocock was directed to complete the triangulation of the Eastern Dún and subsequently to proceed to Jaunsár Báwar for the same purpose; and Mr. Wrixon to carry main traverses in the Eastern Dún for fixing trijunction pillars for checks on the boundary traverses.
(3.) During the season, 225 square miles of country have been topographically surveyed on the Out-turn of work scale of 4 inches to the mile; the triangulation of the Dún has been completed and the whole of Jaunsár Báwar covered with a net-work of triangles, comprising a total area of 470 square miles. 70 linear miles of main theodolite traverses, 328 miles of boundary traverses nud 63 miles of check survey lines were run.
(4.) The whole of the topography bas been done most carefully and the mensurements havo been very searching. C3 linenr miles of check survey were executed

Topography.

 across the detail work of the Native Plane 'rablers to test ita correctneas, and the bill aketching wns examined in sitit during the progress of the work. 'lhe results of theso tests were very satisfactory and proved the work to be minutely accurate.(5.) The area topographically surveyed is smaller than I had expected to have completed, but meveral causes tended to this result. The Nativo Surveyors with only two exceptions were raw hands and had to be taught Plane Tabling, for their worls during the previous season (which was their first season of surveying) had been restricted to traversing. 'Their progress too when trained proved far elower than I had anticipated, so that the brunt of the work fell on the European Assistants. This in e great measure however was due to the intricacy of the ground, and the large amount of detnil met with throughout the ground over which the topography was carried. The tabular statement will shew this by the nmount of chaining and the large proportion of plane table atations which were found requisite for filling in the interior details. For the first 3 months of the field season also, the luxuriant vegetation for which the Dún is proverbial nud the high bhabur grass which covers a large proportion of the low-lands, proved a great obstacle to the progress of the Plane I'ablets. I'his gmas is generally burnt in the month of Februnry and until that time the surveyor is much delayed by having to cut lines for his chain measurements. The field senson also was slooter than I might luave made it, but this I was compelled to cut short owing to the large amount of mapping which had to be undertaken during the recess, this having been grently augemented by the large area brought in by the Kumaun and Garhwal detachment during the same season. Under these circumstances and bearing in mind that it was our first season of working on the 4 -inch scale, I trust this out-turn will be considered eatisfuctory.
(8.) The whole of the traversing required for the completion of the Survey of the Dún was finished.

Traremen

All precnutions, as described in my last report, were taken to insure accuracy of results. The main theodolite trnverses were in all cases run between trigonometrical stations, but in consequence of the ground being molo rugged and broken than that met with in the prerious season, the ratio of error is somewhat lnrger, though still astisfactory.
(7.) 'Ihe boundary traverses were all completed and comprise 12 I villages and estates. These

Boundary traversen and their errore.

 traverser are in all cares well tied in by check points furnished either trigonometrically or by the main theodolite minverses. They were erecuted by the Native Surveyons with the plane table and circular protractor, nend were all reduced in the beld and found to atand the usmal teats in a satiufactory manner. 'The gromil was more or leas bad throughout for chaining, expecially about the low-lands at the foot of the lills, a large portion ofthe work having to be carried over broken ground and ravines with steep declivities, the measurements of which required very heavy corrections for reduction to the horizontal level. The bounilaries also were very intricate, the average distance between each station in 5720 stations being only 458 chains. Notwithatanding these trials, the errors are very fairly small.
(8.) The country surveged during the season comprises ground of erery variety, from the Remarks on the country. flat cultivated lands in the vicinity of the Asan, a tributary of the Jumna and the main drainge chamel of the Western Dún, to the crest of the Mnssoorco range which rises to a height of orer 7000 fect above sea level. 'lho low spurs and broken ground about the foot of the hills gave an infinity of labour and trouble in surveying, being for the most part covered with thick Sál forest and cut up by deep precipitous ravines and 'raus' with beds of boulders lower down; these raus spread out leaving broad undulating plateaur between them which are for the most part well cultivated, except in places where shingle crops out.
(10.) Numerous heights, in addition to those obtained trigonometrically, have been fixed by Aneroid heights. Ancroid barometers throughout the senson's work.
(11.) The amount of trinagulation and traversing in advance of the portion topographically surveyed, corers in the Dún an area of 125 square miles, this being

Triangulation and Traveraing in adrance of the detail surver. the extent of the Zamindárí lands which remains to be surveyed by this party. In addition to this, the whole of Jaunsár Báwar, comprising an aren of about 360 square miles, is rendy for the topography to be commenced. I'he surrey of this portion of the district which is composed enticely of hills and mountains, is to be done on the acale of 2 inches to the mile and will admit, I am afraid, of little are no traversing.
(12.) I now procoed to report separately on each officer's worls, the details of which are tabulated on page 45-a.
(13.) Lientenant Gore took the field on the 7 th October and was employed until 22nd November in superintending the village boundary traverses in the neighborhood of Rajijpur and Dehra. On relieving hin of this duty I Lieutenant Goro, R.E. entrusted him with the topography of sections 13, 14 and 24 bordering the Juman. Having completed these sections, he took up sections 38, 39 and 49 in the beginning of February. About the middle of March, I sent Lieutenant Gore's party to complete all the low village lands lying among the forest of the Eastorn Dán, in the vicinity of the Song and Suswn; this being the most favorable time of the year for surveying this ground, on account of the bhabur grass being all cleared and its freedom from the malaria of the neighbouring marshes. Much of this land is covered with rank vegetation nourishod by the amount of water furnished by these strcams and their numerous tributaries. The greatest obatacles to the surrey being the cane brakes which were inaccessible to man or clephant. Lieutenant Gore with the help of the Native Surregors completed the work allotted to him by the 20 th April. Lieutenant Gore hnving been transferred to the topographical branch of the department, I have much plensure in recording the valuable assistance I have invariably received from him since he bas been under my orders, during which time he has conducted his duties with ability and energy to my entire satisfaction, und [consider him in every way qualified for independent charge of survey operations.
(14.) Mr. Neuville was employed the whole season in my office in the niscellnueous current Mr. Neuvillo. work of which there was a large nmount.
(15.) Mr. Love was employed all the season in Plane Tabling. He commenced onsection 7 in the Khadir lands of the Junna, where he experienced much delay from the high grase which covers all that portion. In Jumary he took up the north and enst portions of section 27 which was most intricate and difficult ground, cut up by deep ravines and low hills covered with forest. He then completed the hilly portion of section 37, and leaving his two Native Survegors to fill in the low ground, he commenced section 46, which consists entirely of hills and runs up to the Mussoorec and Laudour nettlement. By the end of the serson he completed this section and section 57 which also consists entirely of hills. I was well satisfied with Mr. Low's diligence and the accuracy of his work.
(16.) Mr. Pocock was employed from the middle of October till the beginning of April on

Mr. L. Pocock.

 triangulation. He first completed the remaining portion of the Enstern Dún covering an area of 110 square miles, and on 22nd January started for Jnunsár Bávar, the tringgulation of which he successfully completed by the end of Mareh, This portion of his work embraces an arca of 360 equare miles, which is well covered with points. I have every reason to be well satisfied with Mr. Yocock's exertions and the results of his work.(17.) Mr. Todd was emplojed on topography throughout the season. He commenced work on 19th October with two Native Surveyors and during the senson
Mr. H. Todd. completed sections $9,15,26$ and half of 56 . Of these sections the ground in 15 and 26 was most intricate and diflicult. The delineations of the features have been very artistically and faithfully renclered and the varied character of the ground has been whewn with excellent effect, but the labour involved in surveying such a large amount of detail was great and very tedious. The worls of the Native Surveyors was rigorously examined. Section 56 consists entirely of hills, the ground being very precipitous and difficult to move about in. This portion of the work was also done with Mr. I'odd's usual care and accuracy and tho quality of his work is highly creditable to him. Mr. Todd closed work on the 30th April.
(18.) Mr. Kinney commenced field work on 17th October and was engaged in Plane Tabling during the entire season. He was first entrusted with sections 3 Mr. Kinnoy. and 8 in the low ground of the valley of the Δ san, and was provided with two Native Surveyors whom he had to train. He completed these sections by the 20th January, when I transferred his Native Surveyors aud sent him to take up the topography of the hills in sections $25,35 \& 36$. The ground in the two former of these sections is high with bold open features rising to a beight of about 7000 feet and was easy to sketch, but in the central and lower portions of 36 , the hills are much broken up into small confused masses, covered for the most part with forest and intersected by narrow and intricate ravines, resulting in an unusual nmount of detail in the smaller natural features. A portion of this section which I had hoped to have had completed had to be left for the next field season. Mr. Kinney has worked hard and well, his sketching and delineation of ground is remarkably good and characteristic.
(19.) Mr. Wrixon was emplujed in minor trinagulation in the rough ground between the Delira and Rajpur road and the Song Nedi. He subsequently took up the traverse of the road from Dehra to Hardwár and then Mr. Wrison. carried a line up the right bank of the Ganges from Hardwar to Tapoban. I regret I am unable to report favorably of Mr. Wrixon's work or conduct.
(20.) The topography done by the Native Surveyors, considering that it was their first season in Plane Tabling, was very fair and found to bo minutely accurate, but they are very indifferent draftsmen. In this however they Native Surveyors. nre inproving, and will I have no doubt next season turn out more artistic work. I bave been well satisfied with the diligence of all the Native Surveyors with two exceptions, one of whom was discharged and the pay of the second reduced.
(21.) The party was employed during the recess on computations and mapping. all the Recess of 1875. computations connected with the previous season's triangulation and traversing were completed. The mopping includes the preparation of 7 Sheets of the Dehra Dún Survey on the scale of 4 inches to the mile which have been completed and sent to the Head Quarter's Office for publication.
(22.) The detail survey of the remaining portion of the Zamíndárí lands in the Dun will

Programme for field season 1875-76. be resumed and completed. The topography of Jaunsír Bíwar, on the scale of 2 inches to the mile, will also be taken up by a portion of the party at the commencement of the field scason, and I trust to be able to complete the uursey of this portion of the district also during the ensuing senson.

DEIRA DUN SURVEY.

Tabular statement of out-tur'n of work. Season 1874-75.
Details of Triangulation.

Obeerter's Namb.													
Mr. L, Pocock, ...	Incl. 12	470	75	657	191	441	5	$1 \cdot 4$	$2 \cdot 4$	112	11	1064	7
\# E. Wrizon, ...	7	- 20	23	39	\cdots	62	\ldots	\cdots	\cdots	7	40	103	15
Totals,	490	98	596	191	503	5	\cdots	\cdots	119	...	1167	22

* Approximate.

Details of Topography. Scale 4 inches $=1$ mile.

Names.	Area in acres.	No. of acres per Plane Table Stution	Linear Miles.		Remarie.	
			Chain mensurementa.	Check lines.		
Lieut, St. G. Goro, R.E., and 4 Nativo Surrcyors,	$\} \begin{array}{r}36,825 \\ 5,992\end{array}$	$3 \cdot 8$	627 3	17.7	Level and broken ground.	
		$10 \cdot 5$	Hills.	
Mr. J. Low, ...) 15,404	$2 \cdot 3$	329.0	19.3	Comparatively level ground.	
and 2 Nativo Surveyors,	\} 6,630	$3 \cdot 3$	115.8		Rarines and low hills covored with	
	(8,178	25.7	$8 \cdot 2$...	Hills.	
Mr. H. Todd,and 2 Native Surveyors,...	24,379	$1 \cdot 9$	$578 \cdot 1$	9.9	Very intricato ground consisting of ravines and low hills moelty covered with forest. Hillo.	
	$\}_{4,600}$	$19 \cdot 4$				
Mr. T. Kinney,	22,620	7.0	293.6	15.7	Partly level and partly ravines and [low hillo. Hills.	
and 2 Native Surveyors up to	\} 15,760	22.1	\cdots	\ldots		
20th Jenuary,					Hills.	
Mr, E. Wrixon, \quad...	3,369	11.2		40.4	...	Flat and tolerably open ground.
	$\begin{array}{\|c} 1,43,757 \\ \text { or } 224.6 \text { eq. } \\ \text { miles. } \end{array}$..'	1932.4	62.6		

Details of Traversing.

Nambe.			Average distance in chains between sta. tions.	Avorage error per 1000 links.	Arerage angular error.	Remarif.
Mr. F. Wrixon, (Theodolite traversee)	70	271	20.67	1.00	11"	
Native Surveyore,	328	5726	4.58	$2 \cdot 90$.."	
Totals, ...	398	6907	..]	\cdots	...	

(23.) My last report trented the operations of this party up to the beginning of July 1874, when it returned to recese quartera nt Almora, which place was selected on account of its being close to the ground of ficld operations- n matter of much importance on account of the limited period in which aurvey operations could be carried on in the higher snowy ranges. Experience has proved that the best time for operations in these high altitudes is immediately after the miny senson, when the snow line is at its highest and the atmosphere bright and clear.
(24.) The party, which consisted of the members as per margin, had but a ohort reat at
E. C. Ryall, Esq. Aest. Supdt.

Assistant Surveyors.

Mr. G. H. McAFee.
E. F. Litehfield.
, 1. 8. Pocock.
"J. F. McCarthy. Almorn and made an early start for the field while the rains were still in progress. This involved much discomfort on the march and some risk of malarious fever, but was necessary in order to secure every day of the short time available for surveying.
(25.) Mr. Hyall has submitted the following report of the oporations under his charge.
"Active operations were commenced on all sides by the 13th September.
"It was my original intontion to conduct a series of triangles along the Tibetan frontier with a view of laying down peaks, \&c., in the Sutlej Valley. I abandoned this project when I learnt that the undertaking would press too henvily on your estimate of expenses. I proceeded instend therefore to inspect the topographical work finished during the previous summer nud the ground where tho Plane Tabling wns about to be donc. After completing my inspection tour, I proceeded to continue the Milam triangulation. The total length of the Milam triangulation is 48 miles, of which 32 wns finished during previous and 16 during the season under review. The greater portion of this work was very trying; it required all the skill and nerve I posscssed to pierce to stupendous gorge overhung by the lofty suowy mountains of Chirkbana nad Hasaling with a series of triangles. The steepness of the gorge may be conceived when it is understood that the direct horizontal distance from Hasaling mowy peak to the Gori river is rather less than 1 miles and that it towers 14,000 feet above it. In this triangulation Mr. McAFeo assisted me by observing at three of the base stations.
"The estent of triangulation finished by me covers an area of 200 aquare miles, comprising fire stations visited of no arerage height of 13,300 feet above sea level.
"As far as regarde altitude and physicnl formation, the two districts of Kumaun and Garbwál

Deacription of country.

 may be divided iuto fire belts or zones. I shall describo theso in succession beginning with No. 1 from the north.No. 1 Zone. The average width of this belt is about 15 miles. In length it extends from the Mána Valley in the west to that of Byáns, bordering on the Nepal frontier, in the enst. It comprises within it, besides the two above mentioned valleys, those of Níti, Milam, Ralam and Dharma. The arerage height of the basins of these valleys is nbout 14,000 feet above sen level, the highest basin $(15,500)$ being that of Mána and the lowest (12,500) that of Byáns. The average altitude above sea level of the mnin and minor muges within this belt is about 20,000 feet. The ground though lofty, is for the most part undulating. Access to the tops of most of the spurs or ranges is not difficult, though very trying in consequence of the great tenuity of the air. With the exception of tho main ranges which divide the above mentioned six valleys, the whole formation of this zone is of alate of almost every conceirable color and in various stages of decay.

The ranges that are excepted, are entirely composed of granite, that is so far as I could julge, for I could not perceive any or the slightest ordor of stratification among them. Fuel can be seldom bad over 12,500 feet; grass never over 13,500 .

No. 2 Zone. This belt consists of ranges of extremely precipitous and rugged lofty mountain barriers runaing parnlel to and south of Zone No. 1. Its average width may be put down at 10 miles, its maximum is about 17. The whole of these ranges are stupendously lofty, the mean height of the peaks on them being about 22,000 feet, and the formation throughout is of granite, except in some few places where it is of gneiss. The drainage from the comparatively undulating and open vallegs of Mána, Níti, Milam, lálam, Dharma nud Byáns lying in Zone No. 1, breake through these enormous barries, aud the sis gorges so formed average in mid height about 4 miles in breadth. The widest, the gorge of the Niti or Dhaulí rivor, towards Joshimath, being about 6 miles. The narrowest is that of Milam being about 3 miles. The sides of these gorges are overhung, as a matter of course, by almost sheer precipices, capped by towering needle-like peaks. The easiert of them, where the triangulation has been earried through, were converted into stationg, ascent to most of which was not accomplishled without imminent risk of life. The widest portion viz., 17 miles of this
belt consists entirely of a wild and uninhabited valley called the Rishiganga, at the head of which is the Nanda Doví mountain 95,669 feet high. This valley is extremely precipitous and broken; the ground begond the first 7 or 8 miles consisting of bare rocles, snow-beds and glaciers, with no signs of vegetation. The hills fall abruptly down to the river which dashes like a torrent between: perpeudicular walls of rock, which form its bunks.
"No. 3 Zone consists of from 6 to 7 miles of spurs emanating from the foot of the snowy ranges and running mostly in a southerly direction. The average height of these spurs is about 12,000 feet above sen level; they are composed partly of stratified gneiss and partly of crystallized lime-stone, the former occurring about 4 miles towards the north and the latter about 3 miles towards the south. In consequence of the stratifed nature of their formations the spurs are, as a rule, precipitous on one side and sloping on the other. The surveyors working amovg them bad no diffioulty thercfore in getting about.
"The operations of the snow party under my direction were almost entirely confined to goound in the above three zones. It may be thought perhaps that to treat similarly the remaining portion of Kumaun and Garhwil previously surveyed, would be irrelevant to this report. In order however not to leave the sulject in an incomplete form, I shall procecd in a oursory manner with the description of the remaining zones.
"No. 4 Zone is by far the broadest; it nverages nbout 50 miles, and the average height of the ranges in it is about 7,000 feet above sea level. The differences however between the heights of contiguous spurs are so trilling, that to one looking at the whole of this belt of country from a commending point, all the ranges would appear to be neally of one uniform beight, no great contrast is to be eeen anywhere. I'he width of this zone is grentest in Kumaun and least in Garhwál. From any point in the middle of this zone and from its southern extremities, the snowy ranges appenr to rise very nbruptly and seem to gird its northern limits like an inmense wall, towering about 12,000 feet above it. Unlike the mountains found in most parts of the Himalayas, as far as I have seen of them, the mountains in this 4th zone appear to be much waterworn and so present very minute and intricate features. They have given topographical surveyore much hard work, entailing upon them at the same time the exercise of much judgement as to what detail should be suppressed, in order to make room for expressing the more important features. With the exception of some portions lying towards the north which is of gueiss, the principal formations are of lime-stone, slate, micn-schist and quartzose rocks.
"No. 5 Zone. This might be called the Siwalik formation of Kumaun and Garhwal. Kummun has very little of it, the widest part in it lies to the west of Kálídhúngi where it is about 8 miles. To the enst of Küládhúngi this formation loses much of its Siwalik like aspect, and unight be termed simply a sand-stone range, of an average height of about 4,000 feet having an average width of about 5 miles. Garhwil however has the largest share of this sand-stone formation. 'I'he widest tract of the sand-stone country in this district, consists of the Patli and Kutli Dúns, which avernge in breadth about 12 miles, inclusive of the outer ranges girding them. The average height of the ranges in this last or sand-stone zono, with the exception of that noted as lying in Kumaun to the east of Kalédhúngi, is about 2,000 feet above sea level.
"Mr. McAFee was entrusted with the triangulation of the country about Choudans, which lies at the foot of the Dharma and Byans Valleys. He succeeded Mr. MoAFee. with praseworthy application in getting through about 600 equare miles of triangulation by 24 th November, when he closed work and retraced his steps to Naini Tal.
"Mr Litchfield was deputed to take up the Plane Tabling of the southern half of the Niti

Mr. Litchiaeld.

 Valley and of the valley of the Rishiganga river, a description of which has been already giveu. On completing these sections he was directed to resume work in the higher valleys of the Pindar river. He accomplished the work allotted to him in a very creditable manner but not without undergoing great exposure and privations eapecially in the Rishiganga V alley, the survey of which is perhaps the most forinidable undertakiag in the whole range of the Himulayas yot accomplished. The amount of his field work consisted in sketching an area of 837 square miles. Considering the quantity and quality of his aketching, he deserves much credit for his successful labours."Mr. I. Pocock was entrusted first with the shetehing of the upper portion of the Mana

Mr, I. Pocock.

 Valley, in sections 21, 22 and 29, which he successfully completed by 5th October."Mr. Pocock's survey of this portion of the Mana Valley, wns a most arduous and enterprising feat for which he deserves much commendation. On the completion of this piece of work Mr. Pocock was directed to reaume the aletching of the Jowar Valley, which he bad been obliged to relinquish
in the beginning of July owing to the inolemency of the weather. After doing this, he completed section 63 and a portion of 62 lying on the eastern frontier of Kumaun from which he made a reconnoissance of the Nepal border. He then retraced his steps towards Kudrprayág in Garbwál, to sketch a small portion belonging to section 8 , which had been inadvertently omitted when the survey of that part of the country was dono. Advantage was taken of this opportunity to provide Mr. Pocools with aneroid baremeters, for the determination of heights of places along his route from Almora dia Srinagar through Tihri.Garhwál to Landour.
"Mr. Pocock after an arduous field season closed work on 20th March and arrived at Dehra ou 31 st March.
"From what I could learn of the ground in the Niti Valley, I formed an opinion that the upper portion was, though very lofty, yet comparatively easy to survey; I
Mr. McCarthy.
therefore made over this portion to Mr. McCarthy, as be was the lenst experienced hand in the party. He accomplished the undertaking with credit, for it was accurate. His rendering of the ground, as far as giving adequate expression to the features, was however very poor.
"I have good reason to anticipate that more than ordinary difficulties will be met with in the north-eastern frontier of Kumaun in the valleys of Dharmn and Byáns, the survey of which remains to be done. Their inhubitants are notorious for rascality and drunkenness, in fact they are little better than mere aavnges, and their proximity to the Nepal and Tibetan frontiers, renders them a very difficult peo. ple to deal with."
(27). The erea topographically surveyed on the scale of 1 -inch to the mile, comprises $\mathbf{2 , 1 7 6}$

Out-turn of work.

square miles and the portion of country triangulated covers 800 square miles. I cannot abstain from drawing parlicular attention to the survey of the upper part of the Mána Valley, a most difficult undertaking successfully performed by Mr. I. Pocock. In an area of 108 square miles, the average height of the ground surveyed was over 21,000 feet, the average height of the Plane Table atations was 19,500 feet and the maximum height visited by Mr. Pocock was 22,040 feet above sea level. This value was obtained differentially by observations of the boiling point at the place itself and at a trigonometrical station of known height, and approximates to the greatest height reached on any mountain by man. The Messra. Schlagentweit in 1855, Vide their Vol. II, India and High Asia, ascended the flanks of this same mountain, Kamet (their Ibi Gámin), to a height of 22,259 feet, on an undefined apot, the height of which they obtained from observations with a mountnin barometer, and Mr. W. H. Johason in the report of the survey operations in Kashmir for 1863-64, is aaid to have visited a point "upwards of 23,000 feet above the sea". The whole of the topographical work was in very elevated regions and the ground in which Messrs. Litch. field and McCarthy were employed, was not very far below that of Mr. Pocock's in point of height. In these barren and inhospitable regions, besides the natural physical difficulties which were in themselves very trying, the commissariat arrangements were a source of muoh anxiety. On considering the trials of such an enterprise, the risks that must have been incurred in ascending mountains of such stupendous height and in traversing glaciers, the physical exertions in such rarefied air and the exposure to extreme cold, I think it will be admitted that these operations were of a most arduous nature and that Mr. Ryall and the Assistants employed under him are deserving of great praise for their energy and determination in overcoming such difficulties.
(28.) During the recess this portion of the party was engaged in the computations of the snow

Recent of 1875. triangulation and in the preparation of the fair maps of the Kumaun: and Garbwál Surrey. The following sheets have been completed and submitted to the Pbotozincogrnphic Office for publication.

Skeleton aheets Nos. VI (2nd edition) XI, XII, XIX, XX, XXI, XXII, XXIII, XXXI, EXXVIII.

Sheded abeets Nos, XII, XXII, XXXVIII.

KUMAUN AND GARHWAL SURVEY.

Tabular statement of out-turn of woork. Season 1874-75.
Details of Triangulation.

Obarrver'a Names.							Himisig.
Mr. E. C. Ryall, ... Mr. C. H. McA'Fee, ...	200 600	${ }^{\bullet} 5$ 21	$+5$ 18	0 50	5 40	19,300 11,600	- Mr. McaFee assisted Mr. Ryall by laking observations at 3 of the base stations. The area about 50 square miles embraced by thees stations has been included in the out-turn shewn againet Mr. McAFee, + Angles observed at 2 of the forward otations during previous field geason contribute towards making up this number.
Totala, ...	800	26	23	66	45	\cdots	

Details of Topography. Scale 1 inch $=1$ mile.
 R.E., Offciating Assistant Superintendent 1st Grade, in charge Leveling Party.
(2.) On the 30th November 1874 opentions were commenced at the S. W. end of the Movements of the party. Bangalore Base, and the point of origin to which the heights of all the Bench-marks are referred, is the metal plate in the floor of the observatory at or about ground level. 'The trigonometrical value of this has been taken at 3117.775 feet.
(3.) From this the line of levels wns carried viá Túmkír, Sira, Hiriyur Tallak and Rampur to Honúr H. S. and into Bellary, continued via Alúr, Adoni, Mádawáram; and the scasou's work was closed at Raichore Railway Station on the 3rd April 1875.
(4.) On the 5 th the return march, about 257 miles in length, was commenced and the party reached Bangalore on the 30th April.
(5.) Before commencing operations the collimation of the levels was adjusted; it was again

Conduot of the operations.

 examined on the lat February and finally tested on completion of the work, when one level was found to be almost in perfect adjuatment and the other only very slightly thrown out.(6.) The staves were compared with the portable standard bar on the 9th December, on the 1st February and Gually on the 3rd April, the day on which work was closed.
(7.) Throughout the senson the rules and instructions laid down for the conduct of leveling operations, were strictly adhered to.
(8.) From a short distance out of Bangalore, the general appearance of tho country passed Nature of the country. through is bare, uninteresting and far from picturesque; although it is decidedly undulating, and might in some places be called hilly, until the neighbourhood of Bellary is npproached, but from that on to Raichore there is not much to complain of in the way of impediment to leveling.
(9.) For the first 18 sections the sum of the rises and falls, passed over by the stavee, gives an average of 65.7 feet per mile; up to section 42 this was slightly reduced being 60.3 feet. As far as section 59 it becomes 55.1 feet; and over the whole line the average rise nad fall stands at 47.9 feet per mile.
(10.) During the operations the roads mere kept to as far as possible, but the line was carried across country for a distance of nbout 33 miles.
(11.) 'Ihe Haggri and 'I'ungabhadre rivers were met with, and had to be crossed; the former three times, first by a bridge at llirigur, secondly about five miles from Houúr H. S. where there was not much water, but over a mile of deep sand, and thirdly at Moka village, where also there was little water but again about n mile and a half of very heavy sand in the river bed.
(12) The 'I'ungabhadra, at Midawáram village, was a somewhat more formidnble obstacle, being about half a mile across with high ateep banks; the waterway was some 25 to 30 clains in width, but fortunately there were islunds (of saud) which were capable of being made use of by tuking a zigzag courae.
(18.) During the montbs of December and January, the nights and early morninge were very raw and cold, and heavy mists hung about until the sun was

Weather and its influence on the bealth of the party.
well up. From the middle of February it began to get warm, and before the close of the working season it was decidedly hot westher.
(20.) The following is the out-turn of work for the senson : 297 miles of double leveling embracing the determination of the heights of 210 Permanent Benchmarks, buildings, temples \&c., \&o ; 2 'I'rigonometrical atations, Honúr

Oat-tarn of work.

 H. S. and Beadúr Z. D. S. of the Great Arc Series; also the G. 'T. S. Benoh-mark at the Mainwaring tank, Bellary, laid down by Lieutennut Harman. R.E., in the previous senson; the "level of top of rails" at Bellary, ddoni and Raichore Railway Stations; 8 Bench-marks of the Public Works Department; and 16 Boundary pillara of the Revenue Survey.At Haichore the usual G. T. S. Bench-mark has been engraved on the rock in sith, the position being indicated by a paka pillar, in a situation, outside the Railway Station Compound, conrenient for the reaumption of the leyeling operations at any future time.
(21.) The computations are now complete and the following fable shows a comparison between the determinations of height of a few of the points connected as obtained Office dulies. by G. T. S. Triangulation, G. T. S. Spirit Leveling, and the Madras and G. I. P. Railway Departments.

Siter.	Heights.	Remance.
S. W. and of the Bangalore Dase,	3117775	Origin of the spirit leveling operations aesson 1874.75, to which the values of all tho Bench-marks are referred.
Bandúr Z. D. S.,	$\left\{\begin{array}{l} 1452 \\ 1452075 \end{array}\right.$	By triangulation. " epirit leveling.
Honúr H. E.	$\left\{\begin{array}{l} 1583 \\ 1583 \cdot 460 \end{array}\right.$	" triangulation. " spirit leveling.
Bollary, (Leval of top of reils), ...	$\left\{\begin{array}{l} 148 \dot{1} \cdot 16 \\ 1486 \cdot 879 \end{array}\right.$	" Madras Railway. From sea level at Madras. spirit leveliog.
Adoni, (Level of top of rails), ...	$\left\{\begin{array}{l} 1364 \cdot 36 \\ 1368 \cdot 193 \end{array}\right.$	" Madras Railway. " ${ }^{\prime}$ ppirit leveling.
Raichore, (Level of top of rails),	$\left\{\begin{array}{l} 1311 \cdot 21 \\ 1314 \cdot 83 \\ 1315 \cdot 517 \end{array}\right.$, Modros Railway. " G. I. P. Railway. From ees level at Bombay. spirit leveling.

Extract from the Narrative Report-dated 4th August 1875-of Captain A. W. BAIRD. R.E., 0fficiating Assistant Superintendent 1st Grade, in charge Tidal and Leveling Party.

(2.) When I visited Hanstal Tidnl Station in August 1874, I found that there was a considerable deposit of fine mud in the small pipe in connection with the cylinder: this caused a sliglit retardation in the flow of the water from the sen to the cylinder and vice versa. This of course had to be

The inspecting party at Hanetal Tidal Station. rectified as soon as possible; the cleaning out of the pipe was a difficult job, and Mr. Rendell completed it in a satisfactory manner, without losing more than a dny or two of the work of the Self Registeriug Tide Gauge. When every thing was again in thorough working order, Mr. Rendell left with lis detachment for Nawaná 'Tidal Station to await my arrival.
(3.) Having made all preparations for commencing leveling operations, I took the field with the greater part of the Native Establishment on the 16 Oth October and
Remainder of party take the Ield and cross to Cutch. marched direct for Jorgn. On my nerival there I at once engaged native bonts to convey us ncross the Gulf to Mundra. We reached Mundra on the 21st October and camped there.
(4.) I visited Namanár Tidal Station as soon as possible after my arrival at Mundra, and found

Visit Nawnár Tidal Station. Mr. Rendell engaged in the repairs of the platform round the observalory, which had suffered considerably from the heavy seas during the monsoon, since 1 had inspected the station in July.
(5.) Having camined the forcshore at Nawanír, I saw that nothing could be done as yet to-

Programme of mork for field scason. wards getting up the small iron pipe and the flexible pipe, as the sand bank had rather increased than otherwise, since I had last seen it. I could also trace a very decided difference in the configuration of the spit at the paint where the creek joins the sen; so that I had hopes in 2 or 3 weeks that the bank would be washed down sufficiently for the pipe to be taken up, and moreover the wind was blowing strongly from the north which would drive the sand bnck along the const. I then gave Mr. Rendell instructions for his work duriug the field senson-that he should wait at Nnwanair for a week or two and Iry to put the station in order as soon as possible, then take up the inspection of the observatorios in turn, and generally keep the stations in working order. The daily morning reports from the stations came to my office during the whole field season. In this way Mr. Rendell was cnabled to work advantagcously : and at the same time I was kept informed of what was going on at each station, while I conducted the leveling operations.
(8.) The country between Nawanaic Tidal Station and the mainland proper, is more or less a

Levoling operations.

 mud awamp or Small Rumn, nud is covered at the bigh tides of the 2 or 3 dnys following every new and full moon. I had therefore to whit until tho very low high tides which would occur nbout the 2 days following the "Moon's first quarter" in order to drive the levels across this treacherous bit of ground satisfactorily.(10.) While waiting to begin work, I had several iron pegs with flat plates fixed on the top, constructed to phace the legs of the Level Stand upon, wheu working over shaky ground. I was in hopes that I should then be able to isolate the instrument to a certain extent, and so leasen the tendency of the bubble to move when readiug the scale after the staff had been observed. To a certain extent this auswered, but I soon becnme aware how futile this plan was, for the ground was paiufully difficult to level over. I save that I must modify the rouline of worling in order to obtain thoroughly good results of the leveling and at the same time get over a respectable distnuce per dien.
(11.) I therefore nuruged that the second leveler should rend the bubble scale, after 1 had observed the staff, while I actually had my eyo at the instrument (for the slightest movement would have caused the bubble to move 4 or 5 divisions and perbaps one end to disnppear altogether). I read the levels in the same way for the sccond leveler, while he observed with his level. Even with all this care, on this ground, and when crossing the portions on the Runn proper, we had often to take several seta of observations before they were perfectly satisfactory.
(13.) The leveling operations were to be carried out in two sections, the first from Nawnuár Tidal Range of the leveling operations. Stalion along the Cutch const, across the Rumn between Shikarpur and Máliii, then aloug the Kinttywar coast to Bnlumba, theuce over nnother portion of the Rumn to IInnstal Tidal Station. 'I'le second series to comnence at Hanstal Iidal Station acoss the Rum to Jorya and thence along the Kattywar coast of the Gulf and across the small lunn of Oldhi Miandal to Okhá lidal Station opposite the Jsland of Bet. Branch lines of course were to be taken to such Irigonometrical Stations as were conveniently near the main line of levels. The Bench-mark stones properly cut had been laid down the previous year (3 at ench 'lidal Station) and the others nbout 10 miles npart along the route, and these had also been laid down with reference to the Trigonomatrical Stations to be connected.
(14.) From Mundra to Shikarpúr the line to be leveled over was distant from the Gulf from 5 miles nt Mundra to 15 miles at Aujár; the country was tolerably flat till within a short clistance of Anjár, where we met with some steep liills and then descended again to about the snme relative level

Noture of country on the Cutch side up to the Rumn. ne near Mundra. From Anjár the ground continued flat for n few miles nad then became undulating almost right areny to Nhikarpur. From Anjár to Shikarpúr the coast line (if I may use that expression for the demareatiou between the mainland and the lann) was from 5 to 7 miles distant from the live of leveling. One peculiar fenture in the roads in Cutch, nlong which we took our levels, is that they are as a rule 2 or 3 feet and in some cascs 5 fect below the gencral surfince of the country in the immedinte vicinity. I was more particularly struck with this when I hud to visit Nawanar in the monsoon last year, for the ronds theo appeared more like small canals than anything else.
(15.) I'lie 'I'rigonometrical Stations in Cutch which I connected were found to be in first-rate repair, and as they had been constructed more than 20 years previous to the time we visited them, it ahows that with ordinary preceutions on the part of the Native Authorities, oar Survey marks ought
Grent 'Irigonometrical Stations in Cureh commeted.
to remain in perfect preservation. very high towers in tho prineipal towns. I may mention that it took me the whole of n day nud working as rapidly ns porsille to connect Butchow HIS., a distance of about $\frac{1}{4}$ of a mile from our main line.
(16.) Between Shikarpúr and the Runn the country is almost entirely uncultivated, and there is a series of hillocks composed of fine black and which are covered

Country on cither side of the Rimm between ジhityrpúr and Múlliá. with dense vegetation. These hillocks nppear to be moveable; they nre dotted hero and there over the plain, but the hillocks in the immediate vicinity of the Runn here are tolerably high, and form nin almost uninterrupted chain for a mile or two to the weat and running ucarly parallel to the general line of the Runn.

On the Kattywar aide opposite there are no hillocks but a tract of waste lend for one or two miles which is cut up by a great number of Nullaha, then we fiud a mile or two of cultivated fields occupied The Meanas
by the "Meanas" (who are considered a race of professional thieves).
The villages of these Meanns are scattered all over the country here, nad there are some 200 of them near the luwn of Millia. Each villuge consists of a Lew straw huts surrounded by a straw hedge, and
the flag of the headman of the village, is conspicuous in each case on a long bamboo stuck into the ground in front of his hut. These Menuss are considered most troublesome people by the officers of the Political Agency.
(17.) The llunn itself between Shikarpúr on the Cutch side and Míllií on the Kattywar side, is some 8 miles across; but of this only about 6 miles can be
Tho Runn betreen Máliá and Slikarpúr.

18 inches higher.
There are two Bench-marks enclosed in large blocks of masonry in the Rumn itself, and situated about one mile ou either side of the centre liue of the lhunn. These Beuch-marks were laid down about 10 monthe before the leveling operations were commenced, and had plenty of time to settle. This part of the Runn is perfectly dry from November till the end of Marcl, but about the end of April or beginning of May, it is covered by the water from the extraordinary high tides, and the water is also forced up by very high south-westerly winds which ulways prevail at that time. The Hanstal creek, being alnost like a funnel at the end of the Gulf, is acted on by the full force of this wind, and the water from the Gulf is thus conveyed far up the lunn.

The ground over which we leveled was almost quite dry and has the usual appearance, blackish grey colour with here and there patches of glistening white from the salt duposited after evaporation.
(18.) I deemed it a necessary precaution in leveling over the Ruan both here and afterwards that the lines should be driven in a perfectly straight direction from

Arrangements for getting a true value of the level of the Itumateach point where stuff whs put up. Also for flaing the lino of levels so that it could be re-leveled over the same points in future. point to point, and also that at each point where the ataff was put up, I should get an exact value of the ground immediately round that point. Accordingly starting from the Bench-mark on the liunn nearer the Cutch const, we leveled in a direct line to a point on the sand hill close to which there is a Bench-mark on the Cutch coast, viz., Pathewalla Dhoi. Agnin the nest line was takeu directly between the two Bench-marks on the lunn, and a third section from the Bench-mark nenrer the Knttywar coast direct to a point on the Kattywar mainland and closing on Bench-mnrk No. 2 Mailliá.

At each point where a value of the level of the Runn was to be determined, the Maccadum was ordered to drive the pegs (very large ones) into the ground until the top was just flush with the surface ; this he tested by a mnson's level which he carried in his hand, the brad was then put in and he seraped awny the earth all round to a depth of about $\frac{1}{2}$ an inch from the surface to allow the staff to turn freely: thus the level of every point on the lluan where the staff was put up will be evaluated.
(19.) The country from Máliá to Balumbn is almost entirely black soil and tolerably fat, and Málliá to Dalumba. one or two pretty large atrenms liad to be crossed.
(20.) There are no Bencl-marks betweeu Balumbn B.M. and Hanstal Tidal Station. The first

The Rumn from Balumba to Manstal Tidal Slution. 4 miles is across cultivated ficlds intersected by Nullahs, in most cnses filled with fresh whter. Having carried the line into the llum, I made similar arraugements for determining the value of the different points where the stoves were erected as before.
(21.) In the very early morning the obscrvations on the Rumn are very sntisfactory, every thing is so very clear, but after 9 o'clock, even in the cold wenther, The work on the Runn as affected it is almust impossible to work except at ridiculously ehort distances,
unthe atmosplicre.
unlesg perhaps on n very cloudy day; on a clear day about noon The work on the Runn as affected it is almost impossible to work except at ridiculously ehort distances,
unlese perhaps on n very cloudy day; on a clear day about noon and up to \ddagger r.m, the atmosphere has the appearance of water boiling hard, and taking observations at that time is of course out of the question. A. heliotrope scen at a short distance looks like an immense flame of fire. liven at a mile distant overything seems doubled above and reflected undernenth as well. Sinnll serub not more than 6 inches or π foot high look immenso bushes, and in one place between IImastal and Joryn, there is a patch of this about a mile across, which may be colisidered as well defined a feature on the lume as a forest on a plain.

The first section closing at IIsnstal

Tidal Station.
(23.) Having inspected the work nt Hanstal 'Iidal Station, which was found satisfactory, and 3rd Beuch-mark at Hanstal 'Tidal Station and finally on the planed surface of the loed plato of the S. It. T. Gnuge.
(22.) Ihe first section of leveling operations closed on the having seen Mr. Rendell at Joryn and made arrangements for getting up some extra piping from Bombay for Nawanár Tidal Station nccording to your wishes in order that 2 months work might becarried out for that station, from 7 th March to 7 th May, I again returacd to

Hanstal and commenced the second section, Hanstal to Okhí. The origin was again the planed surface of the bed plate of S. R. T. Gnuge. Similar arrangements were made as formerly for the Kunn and we had some 14 miles of it to determine between Hanstul Tidal Station and Somarthal B.M. There are aleo 2 Trigonometrical Stations of the net-work series of the Kattywar party on this line. These served as closing and re-starting points for ench dny's work, and their heights were of course deternined. From Somartlal B.M., the ground is slightly undulating, and within 1 mile of Jorya, is cultivated. Jorya T.S. was connected and also a Branch liue of (10 miles) was taken to Halitada H.S., a principal station.
(24.) The line from Jorya to Oklía Tidnl Stntion wns taken vid Nawánagar and Khambhália to Gúrgut which is on the Knttywar side of the Runn of Olshá Mandal.

Joryn to Gúrgut close to the Rumn of Obhí Mandal. The country as a rule was pretty flat with the usual cotton soil up to about 7 miles from Khambhália when it began to be hilly and the ground very hard and rocky. From Khambhálin niso to Gúrgut it was undulating and hilly the whole way. Oue or two rivers Lad to be crossed on this line ; they were of course alnost dried up at the time we were working.
(26) The line of levels after passing Gúrgut had to be taken across the Runn of Okhá Mandul to Topni Ness B.M. in Okhá Mandnl. This Runn which is about 2 miles broad, extends from the gulf of Cutch right awny the whole length of Okhá Mandal, and is only separated from the open sen by a strip of sand hillocks about 4 of a mile long and from 200 to 300 yards broad. The llann therefore enuses the Okhí Mandal to be a mmall peninsula joined to Kattywar by the strip of sand bank above mentioned, close to the village of Madi.
(27.) Close to the Runn the ground is very steep and rocky. About a mile further on, it becomes undulating and then tolerably flat right away to Okhí

From Topni Nese to Olhé Tidnl Station. Tidnal Station. A great number of coral beds are exposed on the surface between Armra and Okhá Tidna Station; this evidently shows that at a not very distant period it must have been covered by the sen. Okha Tidal Station is situnted at the end of the peninsula nod at the point where the gulf joins the sea. I have described it in a former report.

Closed leveling operations at Olhe Tidal Station.
(28.) The leveling operations were completed and closed on the 3 Bench-marks nt Okhí Tidal Station and the S. R. T. Gauge bed plate as at Hanstal.
(30.) Having closed leveling operations I marched to Dwárka and made arrangements with Mr. Rendell for dismantling the stations; and as you had ordered me to do all I could to get complete work from 7th March to 7th May out of Nawanár Tidal Station, and that the inatruments at diemanting thie Tidal Observatories. the other obserrntories should be kept working simultaneously, I arranged that Olrhá 'ridal Station should be the first dismantled and as soon after the 7 th May as possible.
(33.) Previous to dismantling Okhá 'lidnl Station, 1 sent out the Kalassies who remained and Oblía Tidal Station dismantled. some coolies to collect stones to build large mounds or platforms round the Bench-murks and the cylinder which you had ordered me to leare in statu quo. By the evening of the 15th of May the whole of the instruments and all the piping, except 50 feet in connection with the cylinder, were put on board the boat which was moved close by for the purpose. The cylinder had been emptied of water and dried out at the bottom (there was no sediment of any description here) and filled with clean dry sand. A thick wooden board closed the top (being secured by bults and nuts) and an immense mound of stones was raised over it. On the 1Gth Mr. Rendell sailed for Nawanár to perform the dismantling of Nawanár Tidal Station which was done in exnctly the eame way as at Okhá.
(35.) On the day after Mr. Rendell aniled, I left Olhá Tidal Station for Dwárkn. All that

Ohhé Tidal Station as it was left. dent at Dwárka.
(36.) I now marched rapidly from Dwárkn to Rajkot and started the office there, nad a day or Marched to Rijloot. two afterwards went out to Hanstal lidal Station whero Mr. Rendell meanwhile had arrived to dismantle that station. I found he had completed esery thing very satiafnctorily.
(37.) The duplicate shects of the leveling operations have been completed and computed, but

Work during the recess up to dete. the alstracts cannot be made ont until the level of origin at Nawnnar Tidal Station above mean level of sea and also that of the closing points at Hanstal 'lidal Station and Okhá Tidal Station harc been determined. Tho Tidal diagrams
have all been carefully inked in; the time computations in duplicate have been brought up; and the correction of the diagrams for zero and for time is now in band. Experiments for Index errors of thermometers and anemometers have also been completed.
(40.) Mr. Rendell has worked through the whole field season to my entire aatisfaction. I Personnel of the Party. have already reported that he is most useful to me in every way connected with the worl at the tidal observatorics. He has been most painstaking in carrying out everything I wished, and it is mainly owing to his care and vigilance that the work at Nawanar, for the 2 particular months you wished, has been successfully accomplished.

Nursing Dass has worked throughout the season the second level. He is a first rate leveler, a very quick and careful obscrver and does his work gencrally to my entiro satisfaction and fully bears out the good name he has got from Officers under whom he has previously served.

Damoder Ramchundra, Dhondu Venayek and Shitaram Yeshwant have all worked well at the Tidal Observatories, and give promise of being very useful.

Out-turn of leveling operation.
(41.) The following statement shows the amount of leveling done by the party.
$274 \frac{1}{2}$ miles on Main line by two independent levelers.
$29 \frac{1}{4}$ " Branch " "
38 Bench-marks, built in masonry platforms, connected.
17 Principal stations connected.
3 Minor stations
45 Paka points duly inscribed and connected.
(42.) I would ngain beg to report that I am much indebted to the Political Agents of Cutch

Assistance rendered by Politicul Ollicers. and Kattywar and to the Assistant lesident at Dwarka for the assistance they have uniformly rendered me.
(43.) In conclusion I think the Party may fairly be congratulated on the general success of the project in having secured both at Okhé and Hanstal Tidal
General success of the operations; completion of one part of the project. Stations, complete sets of tidal combined with meteorological ob. servations which will compare most favourably with what has been done both in lingland and America, and in baving so far succeeded at Nawnár 'lidal Station that tho observations taken will be sufficient to evaluate (by differentiating with both Olihá and Hanstal which were working simultnncously) the principal data required.

The leveling operations combined with the tidal observations complete the work necessnry for one part of the project and fix the level of about 30 miles of the Runn of Cutch for the season 187t75, and a repctition of the work some 20 years honce will effectunlly settle the question of Secular Depression in this peculiar region.

Extract from the Narrative Report-dated 28th September 1875-of Captain W. M. CAMPBELL, R.E., Officiating Deputy Superintendent 2nd Grade. G. T. Survey, in charge Astronomical Party No. 2.

At the date of my last Annual Report, October I873, I was employed in the reduction of the Electro-Longitude observations, made by Captain Herschel and myself during the preceding season 1872-73.

These reductions were so far complete that I was enmbled to gire the resulte of one measurement, that of the arc Bangalore-Mangalore, and subsequently, in time to be included in the General Report, an approximate value of Madras-Bangalore.
(2.) The prosecution of the field operations was suspended in consequenco of Captain Hersehel's taking furlough in August 1873, and the reductions were also stopped immediately after the submission of my report, because I was unexpectedly obliged to npply for six montles furlough to Europe, which was granted.
(3.) I had some months previously been warned that my services would be placed at the dis. pobal of Colonel Connant for the observation of the Transit of Vonus, from a date which was then uncertain.

While I was in England, I was put on duty to nssist Colonel Strange in the preparation of the instruments intended for Colonel Tennant's use during the Transit. These formed a very full and handsome equipment, consisting of a g-inch equatorial, a transit instrument, a photoheliograph, an astronomical clock and quadruple chronograph, all, with the exception of the photoheliograph, ordered from Messrs. Cooke \& Sons at so late a date that there was great doubt as to their being got rendy in tine. I remained on this duty as long as I thought prudent, with a view to joining Colonel Tennant in time for all necessary preparations, and when I left England, the transit instrument and a small part of the equatorial were still in the makers' hauds.
(4.) I joined Colonel Tennant at Roorkee on 29 th September 1874, some of the instruments had then arrived and the rest came in gradually, all reaching us before the Transit took place. In addition to the special equipment above enumerated, Colonel I'ennant had the loan of the new 36 -inch theodolite, designed for the Great Trigonometrical Survey by Colonel Strange, which had just arrived from England, and he put it in my charge for the Transit. Our time was very fully occupied in preparations up to the day of the Trousit.
(5.) My special duty during the event, was to note the times of all the contacts, and also, while the planet was within the sun's dise, to talse chronographic transits of both limbs of the sun and planet over the wires of the theodolite, using the horizontal wires during the en:ly part of the Transit, both sets altemately for a short time about the middle, and the vertical wires afterwards. I found the observation of contact with such an instrument very difficult, beonuse the limbs appronched, especially at egress, very slowly, and as practice with the model had shown the probability of the contact being sud. denly completed by the formation of the "black drop", the momentary expectation of this lasted over minutes, during the whole of which the motion of the instrument both vertical and horizontal had to be maintained by the tangent screws.

During the Transit I never left the telescope, and secured a large number of the observations of sun and planet described above, which when reduced will afford so many determinations of the relative positions of the two.
(6.) With regard to the 36 -inch theodolite, I may remark that it is a magnificent instrument, elaborated in its details to an unusual degree, and as far as I can judge, its performances are excellent. A theodolite, with its large horizontal circle and comparatively short telescope, cannot be a convenient instrument for astronomical work, but I envy the surveyor who may have to nse this instrument for triangulation, if his work lies in a moderately lesel country, compelling him to resort neither to the tops of high hills nor towers.
(7.) I left Colonel Tennant in April, and proceeded for a short time to IIend Quarters, for the purpose of discussing with the Superintendent the programme of operatious during the eusuing field senson, when it is intended that I should go on with the Electro-Longitude observations with Captain Heaviside, R.E. as my colleague. I then proceeded by Calcutta and Madrus to resume my proper duty at Bangalore.
(8.) At Calcutta I had severnl consultations with Mr. Schwendler, Electrician of the Government Telegraph Department, on the sulject of the electrical arrangements of our chronographs and the electrical portion of our work generally. I found him extremely obliging, and ready to assist me in undertaking experiments as to the chronographic arrangements under discussion, to which I shall refer aguin. I also obtained from him some useful general information, with reference to our operations.
(9.) I was engnged for nearly a formight at Madras in forwarding the determination of the difference of longitude between Roorkee and the Malras Observatory by the clectric telegraph, which was required to enable Colonel I'ennant to reduce his Transit of Venus observations.
(10.) After arrimal at Bangalore it was a matter of some time to pick up the threads of the work, which had been in abeyance for more than a year and a half, and was of so novel a kind, that no cut and dried plan of procedure had been adopted. At first I had no assistance beyond that of my native writer and but little progress in the reduction was practicable. Since my reinforcement by Messra. Keelnn and Bond, the reductions have made rapid progress and are now nearly complete.
(11.) My own time has been very much occupied with the instrumental equipment. I would refer to my lnst report, and that of Captain Herschel, on this subject, which contain detailed descriptions of the equipment and the performances of its various parts. lat, one of the transit telescopes was condemned, as being to a certain extent untrustworthy, owing to uncertainties in its line of collimation. 2nd, the electric arrangements of the chronograph were bitterly complained of by buth of us, as giving endleas trouble and anxiety to such a degree that up to the close of the season's work we could never suicly reckon on getting through a uight's observations without a hitch.
(12.) I first turned my nttention to the fanlty Trausit, encouraged in the work by the fact that a similar failing in tho 'I'ransit circle of the Cimbridge Observatory, which was under investigation when I wrote my last report (vide para 20), had been since traced to bad soldering and corrected (vide Monthly Notices of Roynl Astronomical Sociely for Februnry 1875, pnge 188). The idea of auch a cause, when suggested to my mind, commended itself' as that which would best explain the effects we had observed, indeed it at once made clear what before was obscure. My first step was to carry out the process described as contemplated in my last report and by a little filing the reversal of the object haif tubc (i.e. revolution on its own axis through 180°) at its connection to the axis, was rendered possible.

Half an hour's observation of collimators then showed that the fault, was in that part, because the errors previously observed remaived identically the same, except that their signs were changed.
(13.) I then took the tube to Madrus and showed it to Mr. Doderet, the Mathematical Instrument Maker to Govermment. When we examined it with a magnifying glass, signs of yielding round the base of the tube became apparent, and farther search showed that the tube had been spliced, in order probably to make it correspond to the focal length of the object glass after the latter had been ground. The existence of such patching must be considered sufficiently discreditable to makers of the rauk of Messrs. Cooke \& Son, and it was also imperfectly and clunsily executed. Very little doubt remained as to our having found the seat of tho mischicf, and Mr. Doderet, at my request, immediately took steps to strengthen the splicing and make it effectual.
(14.) When I received the tube from Madras and put the telescope through exactly the anme course of observations as before, I fomen that the funt, if not absolutely, was practically eliminuted, as I failed to discover any certain indication of what had previously been most gross quatities.
'This result must be considered very satisfactory with regard to our future observations, and moreover, having now a clear knowledge of the nature of the old falt, it may be possible to amend the method by which the collimation and level corrections for the instrument were deduced during seasou 1879-73.
(15.) I next attacked the arrangements of the chronograph. As already remarked I had some consultation at Caleutta with Mr. Schwendler on this sulject.

My object was, 1st, to get rid of the induction coils, involving the troublesume Eunsen Batteries, and frictional electricity, and 2nd, to throw aside also if possible all chemically prepared paper. I had several alternative schemes in view.
lst.-To record by lines traced on preparell paper by means of electric currents.
2nd.-'lo prick holes in the paper by mechanical means put in action by electric currents.
3rd.-'I'o use pens drawing continuous lines, the signals being recorded by sudden jerks to one side caused by electric currenta.
(16.) The argments in faror of the first were theoretically greater instantaneity of signal record, and no change being required in the parts of the chronogruph for its adoption. Against it, the necessity of prepared paper, very similar to what we had alroady found so objectionable, and the probable necessity for strong battery power. It was to pertect this method that Mr. Schwendler so kindly undertook to execute experiments.

The second method I was familiar with, being the same as that of Colonel Tennant's chronograph, and I knew it to be perfectly trustworthy and simple, but on the other hand the alteration of our chronographs to suit it would have been troublesome.
'Ihe last method I was already familiar with by description, as it is that generally used in America, and at Madras 1 had the opportunity of sceing it in practice in a small chronograph of Mr. Pogson's, the action of which was so very certain and satisfactory that I at once decided on adopting the priuciple if possible.
(17.) On exmmination of our chronographs I found the changes required would be very simple and easy, and our own apparatus contained the necessary purts of any importance, viz., the electromagnots of the relays, which the adoption of the new method would throw out of use. I accordingly drew up a design which Mr. Doderet executed, with in some respects perfect success, and he has now in his hands an ameaded design, which I see mo reason to doubt will prove quite satisfactory in every way.
(18.) The first attempt failed, because I was atriving to obtain the double record of clock and observer (or two cloeks) by menns of only one pen, which would have had the great advantage of doing away with "style (or pen) equation".

After a good denl of experiment I was obliged to abandon this, finding that in order to obtain n satisfactory record, a somewhat radical chango in our present menns of producing the sigasls (breaking and making circuit) would be necessary, which I did not think the object justified me in attempting with the timo and means nt my disposal. The present design comprises two pens following each other on tho paper, just as the styles did lormerly.

My confidence in its being found to answer, is I thiuls justified by the single record, already obtained from a similar pen, leing as good ns one could wisl. The ouly change in the chronograph is, that the ebonite plate onrrying the styles has been taken off the oarriage, (see my last report para. 24) and a larger plate of wood substituted, on which aro fitted two electro-magnets (talen from our old relays) and the pens, which project over the barrel just as the styles did, and trace exactly similar spiral lines.
(19.) This method does away with all the oljectionable features of the old arrangement, and is $2 s$ simple as can be easily imagined. There may be a slight loss of necuracy, but I doubt even this, nond if it does occur it must be of the irregular lind which can causo no detcrioration in the final results.

It has also the advantage of economy in saring expensive chemicals, as well as by reducing the amount of apparatus carried about. Lastly, a great deal may be often gained by the two observers exchanging telegraphic information, in doing which Captain Herschel and I constantly lost time by our inability and (common to all beginmers in the art of sigunlling) to read as fast as we could sigual.

With the pen recorder the message may be written on the chronograph and read off at compara. tive leisure.
(20.) There is another point in the equipment which has been much improved since our last field mork, viz., the collimators.

Those belonging to the Transits have only recently been received from England and are in every way superior to the ones formerly used, and they have an ingenious feature in their coustruction, by which any morement of the instrument on its pier (which must take place owing to difference of expansion and contraction under varying temperatures) is confined to the direction of the axis. This is likely to prove valuable, because with our field observatories the collimators are necessarily plnced on pillars outside, without any adequate protection either from the hoat of the sun or the cold at night.
(21.) The point is of importance chiefly with reference to the use of the collimators as meridional marks, which they never strictly are, becnuse the deviation of the Trabsit instrument is detormined independently every night. But if the collimators are appreciably stable, as I expect will prove to be the case (and as to which their mutunl observatious afford most searching evidence) they will provide the means of combining all the observations for deviation at a station, in order to get the error for each night. Our former experience sbows that this, if obtainable, will prove a great advantage.

Extract from the Narrative Report-dated 23rd November 1875-of W. H. COLE, ESQ., M. A., 0 fticiating Deputy Superintendent 3rd Grade, G. T. Survey, 0fficiating in charge Computing Office.

I have the honor to lay before fou the report on the work performed by the Computing Oflice between the 1st May 1874-up to which date the last report details it-and the 1st October of this year, that is, for n period 5 months in excess of that usunlly reported on. This change is due to your having recently directed that Esecutire Officers should bring the narratives of their operations up to the end of the recess season, succeeding the ficld season to which they refer, I draw your attention to it, because were it not borne in mind, the out-turn of work I an about to detail would nppear out of proportion to that of previous years.

CALCULATING BRANCH.

(3.) The attention of this Branch has, whenerer opportunity offered, been steadily directed to the final reduction of the trinugulation of India and the publication of the resulte, and considerable progress has now leen made. Of the
Final Reduction of the Triangulation. five largo ecetions into which you have divided the triangulntion west of the Meridinn of 89° three are now in haud, and I will endeavour to give you a general idea of the progress that bas been made with each before stating the work of the Office in detail.

North-Wcst Qundrilateral.

(4.) Thin division of the triangulation which extends orer an area of about 475,000 square miles was in a very advauced atate when reported on last yoar. All the principui triangulation had been reduced

> Calculating Braneh-(Continned).
and the resulte pnssed through the press, nond one of the Synoptical Volumes-which give only such data of each series as are required for practical purposes-had been published, viz., Vulume I, or the Great Indus Series. Since that date four more Synoptical Volumes have been completed and published, viz., Vol. 11. or the Great Are Beries, Section 24° to 30°.
Vol. 11I. " Karáchi Longitudinal series.
Vol. IV. " Gurhágarh Meridional Series.
Vol. V. ", Kahún Meridional Scries.
There still remain three series to complete this section of the triangulation, the Jogi-Tila Meridioual, Sutlej liver and North-West Himalaya. The two former are in a very advanced state and will probably together form Volune VI of the Synoptical Volumes. I hope to send them to the binder in the course of two or three more weeks. The North-West Himalayn Series is ready for the press, but has to give place to other subjects more urgently required. It will be some months before it can be published; but nothing now remains to be done in connection with it by this branch of the office further than to superintend it through the press. It will be accompanied by several charts, most of which are drawn but have not jet been photozincographed.

South-East Quadrilateral.

(5.) This section of the triangulation of India, which is contained between the Meridians of 7° and 80° and the parallels of 17° and 24°, is that which you directed should be reduced second in order. Neglecting the two short triangulations of the South Párasnáth and South Malunchn Scries, which were not executed with first class instruments, the Quadrilateral contains six chains of triangles forming three mutually dependent circuits. At its north-west corner it units with the N. W. Quadrilateral, the side Kámkhera to Bhaorása of the Sironj Base-line Ggure being common to botlı. The length and position of this side having been finally determined in the reduction of that Quadrilatemal were considered invariable. At each of the other corners are base-lines, viz., those of Calcutta, Vizagapatam and Bider. Its reduction necessitnted finding the values of 881 unknown quantities, which should satiafy 282 equations of condition. 277 of the equations were however of such a form that an equal number of unknown quantities were readily eliminated and the undertaking was thus reduced to finding 554 unknown quantities to salisfy 15 equations, subject to the usual condition that the suin of the squares of the several quantities multiplied by their respective reights should be a minimum. Although the method of reduction was the same ns that adopted for the North-West Quadrilnteral, the experience gained from the latter has suggested many slight modifications in the details of the computations which have led to a considerable saving of labour. This has been further lightened to a vory marked extent by the employment of Arithmometers, and I have now the antistuction of reporling that not only has the principal triangulation been finally reduced and prepared for publication, but also that a large amount of secondary triangulation connected with it is in a fur advaneed state; that of the Great Arc, Section 18° to $\mathbf{2 4} \mathbf{1}^{\circ}$, the Calcutta Longiludinal Series and the Const Series is almost finished and only needs to be arranged for publication; that of the remaining series is in an advauced state. Thuy in a lew months nothing will remain but to paes the dnta through the press.

The following table contains the fucts of computation of the Principal trinngulation. In column (1) the 15 equations, which remained after the elimination of the unknown quantities above mentioned, are numbered in the order in which they were nrranged for solution. Of these the tirst six are side equations, five of them being between bese-lines, the measured lengthe of which, have, for the purposes of reduction, boen assumed as errorless. The sixth is a circuit equation. The remaining nine are nll circuit equations in Latitude (λ) Longitude (L) and Azimuth (A). 'I'he circuits are shown by the letters in column (2) which have reference to the diagram. In column (3) are the absolute terms of the equations, or the errors which had to be dispersed between the hase-lines or in the circuits. It sliould be stated that the terms in which the linear errors, viz., those of the first six equations, are here expressed differ from those employed for the N. W. Quadrilateral which will be found tabulated on page 54 -a of your report for $1870-71$, the former being differences in the 7 th place of loge and the latter similar differences divided by hodulusxain $1^{\prime \prime}$: the change is due to a simplification in the manner of expressing the co-efficients of the unknown qunntities. The simultaneons solution of the equations involved finding the values of an equal number of indeterminate factors, and column (4) exhibits the accuracy with which this solution was performed, the guantitics shown in it being obtained by substituting the deduced values of these factors in the normal equations. With the aid of the indeterminate factors, values of the angular errors involved in the equations of condition were found, at first to 5 places of decimals of seconds, and afterwards reduced to is places. These values being substituted in the equations produce the quantities given in columns (5) aud (6), and their accordance with the quantities in

> Calculating Branch-(Continued).
column（3）affords the socond test which was applied to the accuracy of the calculation．These testa having been considered satisfactory the angular errors to 3 places were introduced into the computations and the corrosponding corrections mnde ：the last column exhibits the residunl discrepancies which then remained．

With regard to the first six equations it should be stated that the calculatious of the triangles have been made with tables of logarithms to 7 places of decimals only，an 8 th place being obtainen by interpolntion，yet the discrepancies are at most only 4 in the 8 th place of \log ，and two of thern cancel if the trinngulation is considered continuous from the side Kámkhera to Bhaorasa via Calcutta，to Vizngapatam．Furthermore，if a completo circuit is made starting from the side Kámkhera to Bhaornsa and carrying the calculation of the triangles round the whole peripbery of the Quadrilateral，the value of the side of origin is reproduced identically to the eighth place of decimals of logs．The largest discrepancies in latitude and longitude still remaining aro＂． 005 ，or nbout 6 inches．

Table of the facts of computation．

	Triangulation in colved	Valoe of ciretit eridor				
		Before reduction	By substitu． tion of＂in． determinato factors＂	By substitution of deduced angulur errora		
				As computed to 5 decimals	On contraction to 3 decimals	
（1）	（2）	（3）	（4）	（5）	（6）	（7）
$1)$	A	－16．44	－ 16.439	-16.441	－ 16.439	0.0
	$\mathrm{C}_{1}-\left(\mathrm{B}_{1}+\mathrm{E}\right) \quad \stackrel{\text { E }}{\text { ¢ }}$	$\rightarrow 54.86$	－ 54.860	－ 54859	－ 54.864	＋ 0.2
3 呪		＋ 42.5	＋ 42.500	$+42.500$	＋ 42.501	-0.4
4 可	$\mathrm{C}_{1}+\mathrm{C}_{3}+\mathrm{C}_{3}$ 号の	－ 21.29	－ 21.291	－ 21.289	－ 21.292	0.0
5 －	D	－ 693	－ 69332	－ 6.931	$\begin{array}{r}\text {－} 6.932 \\ \hline\end{array}$	＋ 0.4
6	$\left(E+C_{2}\right)-\left(B_{2}+F\right) \text { ㅁ }$	＋31．9	$+31.900$	＋31．901	＋31．902	＋ 02
7 in λ	$(A+C)-\left(B_{1}+E\right) \quad ?$	＋0．050	＋ $0 \cdot 0.0500$	＋ 0.0500	＋ $0^{\prime \prime} 0500$	${ }^{\prime} .002$
8% L		－0214	－02140	－0．2140	－ 0.2139	.005
9% A	Ditto 耍	＋0212	$+0.2120$	$+0.2119$	$+\quad 0.2117$ +0.2160	$\cdot 000$
$10, ~ \lambda$	$\left(\mathrm{E}+\mathrm{C}_{2}\right)-\left(\mathrm{H}_{3}+\mathrm{F}\right)$ 号	－0216	－0．2160	－02160	－ 0.2160	－ 004
11 ＂L	Ditto	$+0203$	$+0.2030$	$+02030$	＋ 02029	． 000
$12, \mathrm{~A}$	Ditto E	－ 4.968	－ 49680	-4.9682	－ 4.9682	$+\quad .008$
13 ＂λ	$\left(\mathrm{F}+\mathrm{C}_{3}\right)-\left(\mathrm{B}_{3}+\mathrm{D}\right)$	－0．142	-0.1420	－0．1420	－ 0.1419	－ .005
14 ＂，	Ditto 閏	＋ 0239	$+0.2390$	＋ 02390	＋ 0.2388	－000
15 ，A	Ditto	－ 3888	－38850	－ 38880	－ 38881	－ 0005

North－East Quadrilateral．
（6）．Δs the reduction of the principal triangulation of the South．East Quadrilaternl approached completion，I was cnabled to make a commencement with the third section of the triangulation，

Calculating Branch-(Continued.)

known departmentally as the North-East Quadrilateral. It is bounded on the west by the Great Are Scries, Section 24° to 30°, on the south by the Calcutta Longitudinal Series and has in its eastern and northern periphery, the Caleutta Meridional and North-East Longitudinal Series. It contains twelve series, forming eleven circuits and its reduction will prove a more serious undertasing than that of any of the other divisions. At preseat only the circuit errors are in course of calculation, but this preliminary computation will shortly be complete and then the reduction itself can bo taisen in hand.
(7). In addition to the calculations I have already described π good deal of assistance las been given to Captain Heariside in preparing aud passing through the Other calculations. press the reaults of the Pendulum Operations. Captain 'Trotter has also received much nid; the computation of the eutire mass of the obscrvations made by him, whilo he was attached to the Yaircaud Mission having leen performed by this Office and the results tabulated for publication in his report. A quantity of miscellancous work has also been performed which is briefly summed up elsewhere.
(8). I noticed above the great adsantage which had accrued from the use of Arithmometers,

Arithmometers.

 instruments which were introduced in to the office by yourself several montlis ago. Some of the computations which formerly occupied a pair of computers a fortnight or three weeks can with their aid be completed in four or five days. They are almost invaluable and would be quite so if more care was bestowed on their construction. They are of foreigu manufacture nud the several parts appear to be made in the gross, and then to be roughly put together; thus many of them soon get out of order and make mislakes. Were they carefully constructed as they would be by linglish mechanies, the principle on which they are designed is such that it seems impossible they should commit errors; as their manufucture is protected by a patent the desired improvement is not 1 fear likely to be effected.Another aid to the computers, recently introduced into the office, is Crelle's Rechentafela, a book of products of all numbers from 1 to 999 . In this case foreign labour has the advautage over Englieh; for it has produced at n cost of ouly sixteen shillings a most useful book, the labour of compiling which must have been enormous.
(9). The details of the ordinary calculations are as follows:-

Angle Books, ivdesed $\quad .$.	\ldots	\ldots	\ldots	\ldots	467 vols.
Abstracts of Angles, copied and compared	\ldots	\ldots	\ldots	600 angles.	
Zero and general means conputed	\ldots	\ldots	\ldots	\ldots	600

Computations in Duplicate.

(10) The work performed in connection with the Typographic and Photozincographic presses, is detailed below.

Calculating Branch-(Continued).
For Typographic Office.
Synopses of the operations \&o.
Pages compiled and printed. Compilod, but not yet put to prese.
Azimuth Table, Jogí-Tilé and Sutlej Series
Alphabetical Lists of Gurbágarh, Kahúd Sutlej and Jogí-Tílá Scries 105
Errata and Contents, Gurhígarh, Karáchi, Rahún, Great Arc ($24^{\circ}-30^{\circ}$) 11
Note to Great Are Final Chart
Co-ordinates and Descriptions \&c., of N. W. Himalaya Series, comprising 39 square degrees
Numerical and Alphabetical Lists of Principal Stations, Descriptions of Principal Stations of the Series com-
prised in the S. E. Qundrilateral prised in the S. E. Quadrilateral

The whole

The remainder

Triangles Principal and Secondary of the Arc, Calcutta and Coast Series
$\left\{\begin{array}{l}\text { About } 80 \text { pages } \\ \text { which are half } \\ \text { ready }\end{array}\right.$ For Vol. (S. E. Quadrilateral).

Lists, Descriptions of Stations, Observed Angles, Reduction of Figures and Principal Triangles

Besides the above, the auxiliary reductions of the figures of the E. Const Series and of a portion of the Biláspúr Series, including about 20 pages of printed matter, have been compiled but not yet put to press. Some progress has nlso been madein setting up the azimuthal observations appertaining to the South-East Quadrilateral for the press.

For Photozincographic Office.

> Calculating Branch-(Continued).
(11.) Obsorvations for time were taken on 20 accasions during the year for the purpose of shewing

Instrumontal Work.

 menn time and rating chronometera. Meteorological Obserrations were made in the Delira Observatory on every day throughout the year, and the results were reduced and communicnted month by month to the Reporter on Meteorology N. W. Provinces. A table of monthly means is as usual appended to this report. The large self-registering Anemometer referred to in last year's report was put into working order in January last, and a record has been since kept of the hourly velocity and direction of the wind. The winds in the Dún are so light that they often fail to turn the fans which move the direction pencil and this part of the record although it has been always tabulated, bas not been made any use of at present. To do so would necessitate a careful weeding out of all hourly velocities below a certain fixed minimum. As yet only mean hourly velocities, irrespective of direction have been deduced for each month, an abstract of which follows that of the Meteorological Observations. It is remarkable how closely the curves formed from these data resemble one another.(12.) The preservation of the Principal Stations of this Survey has been as ueual steadily kept in view, and much correspondence lias in consequence been entailed. Replies to about 350 letters on this subject were drafted by Mr.C. Wood Protection of Stations. under your direction, and about 40 letters addressed to district officers who hnd failed to submit their annual reports on the stations placed under their charge. Modern changes in the boundaries of districts have caused some difficulty in ascertnining what stations fall within each. Since last reporting $\mathbf{1 6}$ more districts have been fiunlly settled, making in all 307 districts of which the lists are now complete. The check lists now include 2,700 stations.
(13.) Several duties of a miscellaneous character have also been performed by this branch of the office which may be briefly summarised as follows:-Reduction of barometer readings; computation of humidity and observed Miscellaneous. refractions on the Jogí-Tílá Series for Appendix No. 3 to Vol. 11 :-Preparation of Appendices Nos. 2, 4 and 5 to Vol II : - lixamination and arrangement of four Synoptical Vols. for the biuder:-Tramsation of two Explorers' route survey field books:-Alphabetical lista of Indian proper names prepared for departmental issue:-New tables (Auxiliary) and a new form constructed to facilitate the computation of circumpolar star observations for azimuth:-Data collected for discussion as to the advisability of giving the observed azimuths in the S . E. Quadrilateral effect in the final reduction of the triangulation:-Circuit errors of the Kashmir triangulation and North-Weat Himalaya secondary triangulation determined and dispersed:-Effect of the difference in the values of the earth's axes ns adopted by Everest and Clarke on differences of latitude, longitude and azimuth computed for ares of various magnitude :-Elements of the Bombny Isiand Survey, executed in 1865.66, prepared for publication:-Differential latitudes and longitudes examined for the new edition of the Turkestan Map:-Captain McCullagh's and Lieutenaut Harman's leveling recorde examined and reported on :' Errors of mean square' of Intitude, longitude and nzimuth at the terminal stations of the right and left hand branches of the circuits of the N. W. Quadrilateral, compuled from the origin of each circuit. Twenty-nine officers have been supplied with data. Forms for departmental use have been issued to 96 ollicers, and 776 parcels contanining maps, charts, \&c., were booked and despatched. Four candidates for employment in the Junior Branch were examined and three instructed in departmental computations; and papers supplied for the examination of eix other candidates, besides several other duties which need not be enumerated here.

TYPOGRAPHIO BRANCH.
(14.) The work performed during the 4 years ending lat May 1874, and the 17 months, lat May 1874 to lst October 1875, is concisely stated thus.

	1870-71	1871-72	1872.73	1873-74	1874.75 (17 months)
Pages composed,	819	1,143	1,420	1,220	$1,868=1,319$ per annum.
Do. priated,	234,828	241,348	273,157	388,420	$527,916=372,647$

Typographic Braneh-(Continued).

Tho total pages oomposed in the 17 months under report may be subdivided thus,
For volumes of the G. T. Survey,
1402

" Route Book,	...	\ldots	\ldots	\ldots	\ldots	35
" Charts, Memos, kc.,	\ldots	\ldots	\ldots	\ldots	306	
" Annunl Report,	\ldots	\ldots	\ldots	\ldots	\ldots	125
				Total	\ldots	1868

DRAWING BRANCH.

The work executed by the Drawing Office is exhibited in the table which follows this report. Some very important maps have been prepared there during the past yenr; those of most general interest are the 3rd Edition of the map of 'Turkestan, compiled under your own superintendence; the map to illustrate the reports on Sir Douglns Forsyth's Mission to Yárkand and other maps relating to Trans Frontier explorations, the compilation of which is due to Captain I'rotter.

PHOTO-ZINCOGRAPBIC BRANCR.
The work from lst Mny 1874 to 30th September 1875 is shersn below under the hends of Maps, Charts, Diagrams and Forme.

Maps.

Photo-zincographic Branch-(Continued).
Charts.
Besides the foregoing 28 Blue prints were issued and several Silver prints were prepared on the scale of the Indian Atlas for the use of the Engravers.

Gtidect.	When publiehed.		$\begin{aligned} & \text { \% } \\ & \text { 宅炭 } \end{aligned}$	No. of copies printed.
$\begin{array}{ccc}\text { Madras Longitudinal and Mangalore Meridional Series } \\ \text { (1871-73) Numericnl } & \ldots & \ldots\end{array}$	July	1874	2	67
	August	"	2	67
Karáchí Longitudinal Serics, Chart No. 1 $\}$ Final	Aug	\ldots	1	973
, ".. ${ }^{2}$)	"	"	1	371
Rangír Meridional Scries, Chart No. 3 Numerical ...		"	1	65
	Septembor	"	1	65
Biláspúr Series, season 1872-73 (S. section) ", ...	-	",	1	65
Brahmaputra Series, season 1873-74 ",	"	"	1	65
Grent Arc Series, (Sec: $24^{\circ}-30^{\circ}$)Final	"'	"	1	384
Gurhágarh Meridional Series, Chart No. 1 Final ...	October	"	1	367
Eastern Frontier Series, senson 1873-74 Numerical ...	November	"	1	65
Rangír Meridional Series, sheet No. 2 " ...		"	1	65
Gurhagarh Meridional Series, Chart No. 2 Final	December		1	375
Malabar Minor Series, season 1873-74 Numerical	January	1875	1	65
Assam Valley Survey, season (1869-74) "	J	,"	1	67
" \quad, (1873-74) \quad,	11	"	1	65
$\begin{array}{cccc}\text { Bangalore Meridional Series (Great Arc), season 1873-74 } \\ \text { Numerical } & \text {... } & \text {... } & \text {... }\end{array}$	February	"	1	70
Bombay Island Survey Numerical		"	1	65
Rahún Meridionnl Series, Chart No. 1 Final	March	"		961
N. W. Himalaya Series No. 1 Final	"	"	1	370
" ${ }^{2}$ " ${ }^{\prime}$		"	1	372
Rahún Meridional Series, Chart "No. 2 Final	A pril	"	1	372
Jodhpúr Series, meason 1873-74, Numerical	"	"	1	70
		...	25	4,271

Diagrams.

Photo-zincographic Branch-(Continued.)

7,536 Maps and 4,446 Charts were issued during the year. The forms are always expended as fast as printed. Contrasting the work performed since $1870-71$ we have,

Year	Maps	Charts	Diagrams	Forms
$1870-71$	6,465	839	13,205	10,482
$1871-72$	10,181	1,375	4,937	13,655
$1872-73$	6,910	2,206	12,055	12,549
1873.74.	9,207	2,027	3,557	28,125
$1874-75(17$ Months)	9,974	$4,27 I$	25,43	34,310

An abstract of the work executed during the past five years stands as follows.

atidect.					Number of Prints.				
					1870.71	1871-72	1872.73	1878-74	$\begin{gathered} 1874.75 \\ \text { (17 montho) } \end{gathered}$
Meps, Charts and Diggrame,			20,509	16,443	21,171	14,791	19,488
Forme,	\ldots	\ldots	\cdots	10,482	13,655	12,549	28,125	34,310

In conclusion I must express my thanks to the several members of the office for their cordial cooperation in, and conscientious disclarge of its duties. Where nll have worked so well it seems almost invidious to single out any for especial commendation. I cannot however refrain from doing so in one instance at least. Mr. Wood has been associated with me in the same office for nearly nine years; but 1 have never hitherto had an opportunity, similar to the present, for placing on record my high opinion of his services and it is with pleasure that I now avail myself of it to state that I consider them very valuable. His duties are of n nature constantly requiring the exercise of no small patience and persevernace but his energies never seem to flag and his knowledge and experience are often of tho greateat service.

Mr. Todd has done excellent work while attached to this office, and while congratulating him on his restored health, I cannot but regret that it necessitates his return to field duties and thus deprives the office of his services.

Mr. Peychers has proved himself exceedingly useful and deserves every commendation. Besides taking his regular share of the work, a good denl of the final supervision of press proofs has to bo entrusted to him and in this he has been of much assistance to me.

Mr. Keating has become fairly woll acquainted with the processes of computation and works industriously.

Baboo Gunga Pershad has dischnrged his duties in the same exemplary manner he always has done and deserves that I should add my testimony to that so frequently expressed by Mr. Hennessey as to his efficiency. Baboo Cally Mohun has also gained my approbation by the intelligent interest he takes in his work. On more than one occasion he has made suggestions with reference to the calculations which have led to a diminution of labour. Baboos Kally Coomar, Gopal Chuader and Tarapodo have worked with their accustomed diligence, and the other computers have given me every reason to be satiafied with them.

In the Drawing Office Mr. Atkinson has continued to conduct his duties as successfully as heretofore, and although the loes of his two best men, Sheik Saidudeen and Goormukh Sing, has for a tive oonsiderably diminished the power of his office, he is doing his best to train up others te supply their places.

In the Photo-zincographic Olfice Mr. Ollenbach is as hard working as ever. I amglad to observe that he now thropis more of the manual labour on his subordinates, devoting his own attention to
supervision of their work, and the out-turn is very satisfactory. Mr. Dyson deserves great credit for the excellence of his negatives. I could wish that his assistauts Dempster and Lloyd made more rapid progress under his instruction, but the art of Photography is not learnt in a day, and with more practice no doubt they will become more proficient.

Mr. O'Connor in the Printing Office has worked very industriously and the out-turn of work has been fully as great as the office was capable of. He was at one time somewhat lax in the discipline he maintained among his subordinates, I am glad that he has done his best to correct this fault.

Mean Velocity in miles of the winds which blew at Dehra during 8 months of 1875 for each hour of the day.

Civil Houra.	February.	Merch.	April.	May.	June.	July.	August.	September.
0 to 1	$2 \cdot 27$	3.13	$3 \cdot 75$	3'14	2.67	$1 \cdot 41$	0.59	0.90
1 " 2	$2 \cdot 19$	2.68	3.00	2.71	$1 \cdot 97$	$1 \cdot 52$	0.66	$0 \cdot 74$
$2 \geqslant 3$	2.39	$2 \cdot 23$	2.54	$2 \cdot 36$	2.03	1.48	0.66	$1 \cdot 10$
$3 \% 4$	2.31	$2 \cdot 0.3$	2.32	1.86	1.77	1.48	$0 \cdot 38$	0.83
4 ! 6	$1 \cdot 96$	1.97	$2 \cdot 11$	1.71	$1 \cdot 63$	$1 \cdot 00$	$0 \cdot 14$	0.57
$6 "$ 6	2.58	$2 \cdot 10$	1.86	2.07	$1 \cdot 70$	1.07	$0 \cdot 28$	0.50
6 " 7	$2 \cdot 08$	$1 \cdot 87$	1.75	$1 \cdot 79$	1.33	0.62	0.14	0.43
7 \% 8	$1 \cdot 81$	1.68	1.61	1.96	1-10	1.07	0.34	0.40
$8 \quad 1 \quad 9$	$1 \cdot 96$	1.67	1.86	$2 \cdot 68$	1.00	$1 \cdot 00$	0.69	0.70
9 ", 10	$2 \cdot 19$	1.90	$2 \cdot 78$	$2 \cdot 78$	$1 \cdot 43$	$1 \cdot 38$	$0 \cdot 79$	1-20
10 , 11	$2 \cdot 46$	$2 \cdot 72$	3.96	311	$2 \cdot 17$	$1 \cdot 52$	1.21	1-5.3
11 " 12	2.31	2.93	4.11	$3 \cdot 96$	2.07	1.52	$1 \cdot 66$	1.53
12,13	3.11	$3 \cdot 85$	4.86	3*79	$2 \cdot 33$	$1 \cdot 83$	1. 3.3	$2 \cdot 03$
13 " 14	$3 \cdot 07$	$3 \cdot 88$	4.93	4.18	$3 \cdot 07$	2.07	1.90	2.40
14 " 15	3.22	4.23	$5 \cdot 28$	$4 \cdot 89$	3.00	1.59	1. 57	2.33
25, 16	3.08	$3 \cdot 83$	4.86	4.43	2.90	1.59	$1 \cdot 37$	$1 \cdot 47$
16 " 17	2.50	3.32	4.59	$3 \cdot 89$	2.20	1. 34	I'20	0.97
17 " 18	1.50	1.98	3.34	$3 \cdot 68$	1.30	$0 \cdot 90$	1.07	0.57
18 " 19	1.12	$1 \cdot 19$	$1 \cdot 72$. 325	$0 \cdot 70$	$0 \cdot 28$	0.66	0.47
19 " 20	1.46	$2 \cdot 32$	2.31	3. 18	1-57	0.41	0.62	0.60
$20 \sim 21$	$2 \cdot 54$	2.94	3.14	$3 \cdot 75$	2.47	0.45	0.76	$0 \cdot 90$
$21 \sim 22$	$2 \cdot 08$	3.00	$3 \cdot 72$	$3 \cdot 36$	2.27	$0 \cdot 69$	$0 \cdot 55$	0.77
22×23	2.42	3.10	3.72	3. 57	2.47	1.17	0.90	0.87
23 " 24	2.52	$3 \cdot 23$	3-14	3.50	$2 \cdot 27$	1-03	0.86	$1 \cdot 07$
Sume,	55*13	$63 \cdot 78$	77•26	75:60	4742	$28 \cdot 42$	20:33	24.88
Averages,	$2 \cdot 30$	$2 \cdot 66$	3'22	3*15	1.98	1-18	0.85	1×04

MONTHLY Meteorological results taken from the Register kept at the Offlce of the Superintendent G. T. Survey of India, Dehra Dún.

Nors.-The height of the Barometer Cistern above Mern Sca Level at Karáchí is 2232 - 11 feet.

Annual Return of work executed in the Drawing Branch of the Computing Office from lst May 1874 to lst October 1875.

GENERAL REPORT

```
ON THE OPERATIONS of the
```


gREAT TRIGONOMETRICAL SURVEY OF INDIA,

D Uli I N O

```
1874-75,
Prepared for submission to the Government of India.
BY
COLONEL J. T. WALKER, R.E., F.R.S., \&C., sulerintendent of the survey.
```



```
printed at the office of the superintendent a. t. survey.
M. J. OCONTOR
```


[^0]: - While these pages mere being passed through the presa I reccived a copg of the table of "the Latitude, Longitude and Altitude of certain points in Hisaír by M. Sehwartz, a member of the Scientife Eipedition of 1875 to thet country", which is publighed in the Russian Turkestan Gazetto No. 49 dated $\frac{9}{21}$ December 1875. The positions it given for Koláh and Kabidián are very fuirly accordant with thoos deduced from tho Bavildar's work as will be soen
 from the following values.

[^1]: Mr. G. Delcham.

[^2]: - Notr.-Pagorla (formerly pronounced pígod) may be derived from this by metnthesis pa-go-da=(da-go-pa, Dr. Sargent), It may bo from Pטy-gude Tel. ($=$ 'Iam, Pey kori) $=$ "Demon's, or deril's temple," or Loupo,

[^3]: Nots.-In Northern India "Pattan" is frequent, on the rivers of the Panjab, as Pfk-pattan, Hnri-kn-patian, \&e., and it is paid to mean a ferry there (ef. H. patni, a ferry man); bleo on the "Jumne" and "Ganges"; e.g. Indrapat (?), Pntna; also it is excerdingly rommon on both coasto of Soullern India:-"Seringapatan" (Sri-ranga-paltanam) is on the river "Camery" (Eiveri).

[^4]: Mr. W. Oldham, Aest. Surveyor Srd Grade.

[^5]: - In last ycar's report para. 22, I gave three different wase in which this town is apelt, Olpád is now a courth, but is that recently udopted and catabliahed by tho Gororument of Bombay in tho oflinal list of names,

